organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­methyl­pyridinium) di­bromo­iodate bromide

aFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, bDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 7 August 2012; accepted 14 August 2012; online 23 August 2012)

In the title salt, 2C7H10N+·IBr2·Br, each of the anions, viz. [IBr2] and Br, lie on a twofold axis. The IBr2 anion is almost linear, with a Br—I—Br angle of 178.25 (3)°. The cation is essentially planar (r.m.s. deviation = 0.0067 Å). In the crystal, each Br anion links two cations via N—H⋯Br⋯H—N hydrogen-bonding inter­actions.

Related literature

For background to this study, see: Kochel (2006[Kochel, A. (2006). Acta Cryst. E62, o5605-o5606.]). For comparison bond lengths and angles, see: Gardberg et al. (2002[Gardberg, A. S., Yang, S., Hoffman, B. M. & Ibers, J. A. (2002). Inorg. Chem. 41, 1778-1781.]); Ahmadi et al. (2008[Ahmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H10N+·Br2I·Br

  • Mr = 582.92

  • Monoclinic, C 2/c

  • a = 13.8627 (16) Å

  • b = 11.3622 (9) Å

  • c = 13.8957 (15) Å

  • β = 108.885 (13)°

  • V = 2070.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.33 mm−1

  • T = 293 K

  • 0.34 × 0.28 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.578, Tmax = 0.733

  • 4417 measured reflections

  • 1834 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.05

  • 1834 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br2 0.86 2.45 3.315 (5) 179

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polyhalides display a variety of structures. Various compounds with interesting structures were found when protonated aromatic nitrogen bases were combined with polyhalides (Kochel, 2006). Herein, we report the crystal structure of [(C7H10N)+]2. [IBr2] . Br-, (I). Few crystals of (I) were found as an unexpected product from reaction mixture of CdI2, HBr, 2,6-dimethylpyridine and Br2 upon attempting to formulate [(C7H10N)]2 [CdBr4] salt of 2,6-dimethylpyrinium.

The title salt is depicted in Fig. 1. The IBr2 anion is symmetrical and almost linear, Br1—I—Br1i angle of 178.25 (3) °; (i) –x + 1, y, -z + 1/2], with I—Br1 distance of 2.7117 (9) Å. These values are in agreement with the values reported in the literature (Gardberg et al., 2002). The molecular dimensions of the cation are as expected (Ahmadi et al., 2008).

The cations are arranged as zigzag stacks parallel to the c-axis (Fig. 2). Moreover, alternating Br- and IBr2- anions form stacks that separate the cations. Each bromide anion is hydrogen bonded via N1—H1A···Br2 with two cations along the b-axis (Table 1). There are no significant Br···Br or aryl···aryl interactions in the crystal structure; the shortest Br···Br separation is just greater than 5.0 Å and the shortest distance between the ring centroids is over 4.8 Å.

Related literature top

For background to this study, see: Kochel (2006). For comparison bond lengths and angles, see: Gardberg et al. (2002); Ahmadi et al. (2008).

Experimental top

A solution of CdI2 (0.37 g, 1 mmol) dissolved in 95% EtOH (10 ml) and 2 ml 60% HBr solution was added to a mixture of 2,6-dimethylpyridine (0.11 g, 1 mmol) dissolved in 95% EtOH (10 ml), 60% HBr (2 ml) and molecular bromine (2 ml). The resulting mixture was refluxed for 2 hr. On cooling few reddish crystals of the title complex were found mixed in the bulk of the precipitate formed which proved to be mainly 2,6-dimethylpyridinium bromide.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(N/C non-methyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Molecular configuration and atom naming scheme for I. Displacement ellipsoids are drawn at the 30% probability level. A stands for the symmetry operation: -x + 1, y, -z + 1/2

Packing diagram of I, down crystallographic c axis. Interspecies hydrogen bonds are shown as dashed lines.
Bis(2,6-dimethylpyridinium) dibromoiodate bromide top
Crystal data top
2C7H10N+·Br2I·BrF(000) = 1104
Mr = 582.92Dx = 1.870 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1414 reflections
a = 13.8627 (16) Åθ = 3.0–29.4°
b = 11.3622 (9) ŵ = 7.33 mm1
c = 13.8957 (15) ÅT = 293 K
β = 108.885 (13)°Block, orange
V = 2070.9 (4) Å30.34 × 0.28 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
1834 independent reflections
Radiation source: Enhance (Mo) X-ray Source1280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1612
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 1213
Tmin = 0.578, Tmax = 0.733l = 1616
4417 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0423P)2 + 1.4129P]
where P = (Fo2 + 2Fc2)/3
1834 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
2C7H10N+·Br2I·BrV = 2070.9 (4) Å3
Mr = 582.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.8627 (16) ŵ = 7.33 mm1
b = 11.3622 (9) ÅT = 293 K
c = 13.8957 (15) Å0.34 × 0.28 × 0.15 mm
β = 108.885 (13)°
Data collection top
Agilent Xcalibur Eos
diffractometer
1834 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
1280 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.733Rint = 0.034
4417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
1834 reflectionsΔρmin = 0.58 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50000.56444 (5)0.25000.0633 (2)
Br10.31439 (6)0.56808 (6)0.10417 (6)0.0846 (3)
Br20.00000.55587 (7)0.25000.0665 (3)
N10.1116 (3)0.3483 (4)0.1556 (3)0.0529 (11)
H1A0.08240.40270.17930.064*
C60.2531 (5)0.3799 (6)0.3092 (5)0.081 (2)
H6A0.20580.43690.31860.122*
H6B0.31450.41880.30900.122*
H6C0.26880.32370.36370.122*
C10.2069 (5)0.3183 (5)0.2109 (5)0.0614 (16)
C50.0574 (5)0.2992 (5)0.0649 (5)0.0654 (17)
C20.2529 (6)0.2305 (6)0.1722 (6)0.085 (2)
H2A0.31830.20570.20910.101*
C70.0487 (5)0.3421 (7)0.0149 (5)0.093 (2)
H7A0.06430.40210.05630.140*
H7B0.09550.27780.00690.140*
H7C0.05440.37420.05060.140*
C40.1058 (8)0.2137 (6)0.0278 (6)0.090 (2)
H4A0.07200.17800.03410.108*
C30.2038 (8)0.1805 (6)0.0814 (7)0.098 (3)
H3A0.23630.12350.05500.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0866 (5)0.0525 (4)0.0601 (4)0.0000.0366 (3)0.000
Br10.0928 (6)0.0837 (5)0.0703 (5)0.0069 (4)0.0166 (4)0.0037 (4)
Br20.0573 (5)0.0564 (5)0.0949 (7)0.0000.0371 (5)0.000
N10.059 (3)0.046 (3)0.059 (3)0.006 (2)0.026 (2)0.005 (2)
C60.065 (4)0.083 (5)0.082 (5)0.005 (4)0.005 (4)0.001 (4)
C10.058 (4)0.056 (4)0.074 (4)0.010 (3)0.028 (3)0.023 (3)
C50.088 (5)0.058 (4)0.058 (4)0.014 (4)0.034 (4)0.002 (3)
C20.098 (6)0.068 (5)0.107 (6)0.035 (4)0.061 (5)0.032 (4)
C70.076 (5)0.116 (6)0.078 (5)0.017 (5)0.012 (4)0.001 (4)
C40.152 (8)0.063 (5)0.068 (5)0.018 (5)0.054 (5)0.014 (4)
C30.151 (8)0.066 (5)0.101 (6)0.031 (5)0.076 (6)0.011 (5)
Geometric parameters (Å, º) top
I1—Br12.7117 (9)C1—C21.383 (9)
I1—Br1i2.7117 (9)C5—C41.372 (9)
Br2—Br2ii0.0000C5—C71.490 (9)
Br2—Br20.0000C2—C31.350 (10)
N1—C11.340 (7)C2—H2A0.9300
N1—C51.361 (7)C7—H7A0.9600
N1—H1A0.8600C7—H7B0.9600
C6—C11.483 (8)C7—H7C0.9600
C6—H6A0.9600C4—C31.373 (10)
C6—H6B0.9600C4—H4A0.9300
C6—H6C0.9600C3—H3A0.9300
Br1—I1—Br1i178.25 (3)C4—C5—C7125.8 (7)
Br2ii—Br2—Br20 (10)C3—C2—C1120.7 (7)
C1—N1—C5125.0 (5)C3—C2—H2A119.6
C1—N1—H1A117.5C1—C2—H2A119.6
C5—N1—H1A117.5C5—C7—H7A109.5
C1—C6—H6A109.5C5—C7—H7B109.5
C1—C6—H6B109.5H7A—C7—H7B109.5
H6A—C6—H6B109.5C5—C7—H7C109.5
C1—C6—H6C109.5H7A—C7—H7C109.5
H6A—C6—H6C109.5H7B—C7—H7C109.5
H6B—C6—H6C109.5C5—C4—C3120.6 (7)
N1—C1—C2117.0 (6)C5—C4—H4A119.7
N1—C1—C6117.4 (5)C3—C4—H4A119.7
C2—C1—C6125.6 (6)C2—C3—C4120.1 (7)
N1—C5—C4116.6 (6)C2—C3—H3A119.9
N1—C5—C7117.6 (6)C4—C3—H3A119.9
C5—N1—C1—C20.2 (9)C6—C1—C2—C3179.9 (7)
C5—N1—C1—C6178.7 (5)N1—C5—C4—C30.4 (9)
C1—N1—C5—C40.9 (9)C7—C5—C4—C3179.4 (7)
C1—N1—C5—C7178.9 (5)C1—C2—C3—C42.2 (11)
N1—C1—C2—C31.8 (9)C5—C4—C3—C21.1 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.862.453.315 (5)179

Experimental details

Crystal data
Chemical formula2C7H10N+·Br2I·Br
Mr582.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.8627 (16), 11.3622 (9), 13.8957 (15)
β (°) 108.885 (13)
V3)2070.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.33
Crystal size (mm)0.34 × 0.28 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.578, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
4417, 1834, 1280
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.05
No. of reflections1834
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.58

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br20.862.453.315 (5)178.9
 

Footnotes

Cuurrent address: Qassim University, Faculty of Science, Chemistry Department, Qassim, Saudi Arabia.

Acknowledgements

The structure was determined at the Hamdi Mango Center for Scientific Research of the University of Jordan.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAhmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGardberg, A. S., Yang, S., Hoffman, B. M. & Ibers, J. A. (2002). Inorg. Chem. 41, 1778–1781.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKochel, A. (2006). Acta Cryst. E62, o5605–o5606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds