organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(Z)-1-(2,4-Di­chloro­phen­yl)-1-[2-(4-methyl­phen­­oxy)eth­­oxy]prop-1-en-2-yl}-1H-imidazol-3-ium nitrate

aJiangsu Engineering Technology Research Center of Polypeptide Pharmaceutical, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Pharmaceutical Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 14 May 2012; accepted 8 November 2012; online 5 December 2012)

In the title salt, C21H21Cl2N2O2+·NO3, the imidazole ring makes dihedral angles of 43.39 (14) and 10.9 (2)° with the 4-methyl­phenyl and 2,4-dichloro­phenyl rings, respectively. The mol­ecule adopts a Z conformation about the C=C double bond, which links the imidazole ring to the 4-methyl­phen­oxy unit via an eth­oxy chain. In the crystal, cations and anions are linked into chains by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to azole derivatives and synthetic details, see: Jeu et al. (2003[Jeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321-1381.]); Fromtling & Castaner (1996[Fromtling, R. & Castaner, J. (1996). Drugs Fut. 21, 160-166.]); Ludwig & Kurt (1985[Ludwig, Z. & Kurt, T. (1985). US Patent Appl. US4554356.]). For a related structure, see: Kurt et al. (1987[Kurt, T., Ludwig, Z., Max, H. P., Martin, E. & Max, D. (1987). Helv. Chim. Acta, 70, 441-444.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21Cl2N2O2+·NO3

  • Mr = 466.31

  • Triclinic, [P \overline 1]

  • a = 9.5300 (19) Å

  • b = 9.924 (2) Å

  • c = 12.449 (3) Å

  • α = 69.05 (3)°

  • β = 80.59 (3)°

  • γ = 88.75 (3)°

  • V = 1083.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.905, Tmax = 0.967

  • 4247 measured reflections

  • 3988 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.158

  • S = 1.01

  • 3988 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.86 2.55 3.218 (5) 135
N2—H2A⋯O5i 0.86 1.85 2.703 (5) 170
C13—H13A⋯O5ii 0.93 2.37 3.188 (5) 147
C21—H21A⋯O3ii 0.93 2.46 3.337 (5) 157
Symmetry codes: (i) -x, -y+3, -z; (ii) x, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azole derivatives such as Voriconazole and Ketoconazole are safe and effective antifungal agents (Jeu et al., 2003; Fromtling & Castaner,1996). As part of our studies on the synthesis of new azole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound (Fig. 1) the double bond is Z configurated. In the crystal structure the anions and cations are connected via N—H···O and C—H···O hydrogen bonding (Table 1 and Fig. 2). The bond lengths and bpnd angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Kurt et al., 1987).

Related literature top

For background to azole derivatives and synthetic details, see: Jeu et al. (2003); Fromtling & Castaner (1996); Ludwig & Kurt (1985). For a related structure, see: Kurt et al. (1987).

Experimental top

1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)-1-propanone (16.6 g, 0.06 mol), 30% aqueous sodium hydroxide (50 ml), toluene (100 ml) and tetrabutylammonium hydroxide (0.26g, 0.001mol) were mixed and heated to 343.15 K under vigorous stirring. 1-(2-Bromoethoxy)-4-methyl-benzene (13.3 g, 0.06 mol), dissolved in toluene (70 ml), wais instilled into the stirred and warmed solution in the course of 10 h. The mixture was stirred at room temperature, and monitored by TLC until the reaction was complete. The reaction mixture was mixed with as much water and chloroform so that the aqueous phase becomes lighter than the organic phase. Thereafter, the organic and aqueous phases were separated. The organic phase was dried with sodium sulfate. The solvents were distilled under reduced pressure. The remaining residue was a dark oil that is diluted with 100 ml ethanol and then adjusted to a pH-value of 2 by means of 65% aqueous nitric acid. The derived nitric acid solution was cooled in the refrigerator. The impure precipitated product herein was subsequently crystallized from isopropanol. The purified product was analytically identified as an approximately pure Z-isomer of propylene nitrate. Crystals of title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Details on the synthesis can be found in the literature (Ludwig & Kurt, 1985).

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H atoms, respectively, and with N—H = 0.86 Å for imidazole H atom, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq methyl C or 1.2Ueq non-methyl C/N).

Structure description top

Azole derivatives such as Voriconazole and Ketoconazole are safe and effective antifungal agents (Jeu et al., 2003; Fromtling & Castaner,1996). As part of our studies on the synthesis of new azole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound (Fig. 1) the double bond is Z configurated. In the crystal structure the anions and cations are connected via N—H···O and C—H···O hydrogen bonding (Table 1 and Fig. 2). The bond lengths and bpnd angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Kurt et al., 1987).

For background to azole derivatives and synthetic details, see: Jeu et al. (2003); Fromtling & Castaner (1996); Ludwig & Kurt (1985). For a related structure, see: Kurt et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydron bonds are shown as dashed lines.
1-{(Z)-1-(2,4-Dichlorophenyl)-1-[2-(4-methylphenoxy)ethoxy]prop- 1-en-2-yl}-1H-imidazol-3-ium nitrate top
Crystal data top
C21H21Cl2N2O2+·NO3Z = 2
Mr = 466.31F(000) = 484
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5300 (19) ÅCell parameters from 25 reflections
b = 9.924 (2) Åθ = 10–13°
c = 12.449 (3) ŵ = 0.34 mm1
α = 69.05 (3)°T = 293 K
β = 80.59 (3)°Plate, colorless
γ = 88.75 (3)°0.30 × 0.20 × 0.10 mm
V = 1083.9 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2974 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.905, Tmax = 0.967l = 1415
4247 measured reflections3 standard reflections every 200 reflections
3988 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.1P)2 + 0.230P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3988 reflectionsΔρmax = 0.33 e Å3
281 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (5)
Crystal data top
C21H21Cl2N2O2+·NO3γ = 88.75 (3)°
Mr = 466.31V = 1083.9 (4) Å3
Triclinic, P1Z = 2
a = 9.5300 (19) ÅMo Kα radiation
b = 9.924 (2) ŵ = 0.34 mm1
c = 12.449 (3) ÅT = 293 K
α = 69.05 (3)°0.30 × 0.20 × 0.10 mm
β = 80.59 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2974 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.905, Tmax = 0.9673 standard reflections every 200 reflections
4247 measured reflections intensity decay: 1%
3988 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
3988 reflectionsΔρmin = 0.25 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27013 (8)0.96396 (8)0.60041 (6)0.0542 (3)
N10.1889 (2)1.1363 (2)0.18787 (18)0.0431 (5)
O10.0643 (2)0.8053 (2)0.31896 (19)0.0589 (6)
C10.1250 (3)0.5853 (3)0.2860 (3)0.0576 (8)
H1A0.06390.52930.33380.069*
Cl20.67621 (8)0.57854 (8)0.62094 (7)0.0624 (3)
O20.11483 (19)0.95339 (19)0.40364 (16)0.0462 (5)
N20.0151 (3)1.1943 (3)0.0941 (2)0.0588 (7)
H2A0.05251.18900.05760.071*
C20.2091 (4)0.5242 (4)0.2333 (3)0.0633 (9)
H2B0.20390.42580.24710.076*
C30.3003 (3)0.6038 (4)0.1610 (3)0.0587 (8)
C40.3025 (3)0.7508 (4)0.1395 (3)0.0587 (8)
H4A0.36050.80750.08890.070*
C50.2213 (3)0.8148 (3)0.1909 (2)0.0548 (7)
H5A0.22500.91360.17520.066*
C60.1338 (3)0.7322 (3)0.2662 (2)0.0487 (7)
C70.3924 (4)0.5339 (5)0.1058 (3)0.0797 (11)
H7A0.37690.43220.13080.120*
H7B0.36790.57610.02240.120*
H7C0.49070.54900.12910.120*
C80.0226 (3)0.7263 (3)0.4017 (3)0.0547 (7)
H8A0.11290.70760.36180.066*
H8B0.02440.63450.45190.066*
C90.0465 (3)0.8152 (3)0.4726 (2)0.0506 (7)
H9A0.04440.82940.51420.061*
H9B0.10470.76250.53000.061*
C100.2547 (3)0.9564 (3)0.3550 (2)0.0398 (6)
C110.2977 (3)1.0517 (3)0.2472 (2)0.0432 (6)
C120.4455 (3)1.0837 (3)0.1785 (3)0.0577 (8)
H12A0.51091.02400.22410.087*
H12B0.47151.18350.15930.087*
H12C0.44871.06410.10800.087*
C130.1000 (3)1.0907 (3)0.1358 (3)0.0541 (7)
H13A0.09830.99990.13000.065*
C140.0496 (4)1.3107 (4)0.1171 (3)0.0654 (9)
H14A0.00601.39890.09560.078*
C150.1586 (4)1.2761 (3)0.1766 (3)0.0625 (9)
H15A0.20461.33520.20470.075*
C160.3537 (3)0.8592 (3)0.4249 (2)0.0384 (6)
C170.3715 (3)0.8572 (3)0.5351 (2)0.0399 (6)
C180.4695 (3)0.7714 (3)0.5946 (2)0.0437 (6)
H18A0.48070.77140.66750.052*
C190.5516 (3)0.6850 (3)0.5453 (2)0.0434 (6)
C200.5350 (3)0.6810 (3)0.4384 (2)0.0443 (6)
H20A0.58900.62100.40660.053*
C210.4362 (3)0.7683 (3)0.3798 (2)0.0420 (6)
H21A0.42440.76620.30770.050*
O30.2956 (5)1.7477 (5)0.1574 (4)0.1483 (17)
O40.1936 (4)1.6269 (3)0.0810 (4)0.1205 (12)
O50.1832 (4)1.8521 (3)0.0225 (3)0.1028 (10)
N30.2273 (3)1.7407 (3)0.0876 (3)0.0646 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0563 (5)0.0623 (5)0.0526 (4)0.0116 (3)0.0167 (3)0.0281 (3)
N10.0496 (13)0.0425 (12)0.0375 (11)0.0039 (10)0.0188 (10)0.0097 (9)
O10.0617 (13)0.0463 (11)0.0704 (14)0.0036 (9)0.0316 (11)0.0140 (10)
C10.0519 (17)0.0528 (17)0.0664 (19)0.0028 (14)0.0114 (15)0.0185 (15)
Cl20.0602 (5)0.0627 (5)0.0686 (5)0.0179 (4)0.0361 (4)0.0185 (4)
O20.0403 (10)0.0456 (10)0.0481 (11)0.0047 (8)0.0132 (8)0.0091 (8)
N20.0570 (15)0.0665 (17)0.0516 (14)0.0088 (13)0.0288 (12)0.0115 (12)
C20.062 (2)0.0557 (18)0.072 (2)0.0064 (15)0.0016 (17)0.0259 (16)
C30.0560 (18)0.076 (2)0.0436 (16)0.0140 (16)0.0016 (14)0.0245 (15)
C40.0570 (18)0.073 (2)0.0422 (16)0.0013 (15)0.0117 (14)0.0145 (15)
C50.0602 (18)0.0526 (17)0.0463 (16)0.0009 (14)0.0117 (14)0.0100 (13)
C60.0444 (15)0.0483 (16)0.0500 (16)0.0040 (12)0.0079 (13)0.0132 (13)
C70.086 (3)0.098 (3)0.059 (2)0.025 (2)0.0081 (19)0.033 (2)
C80.0440 (16)0.0483 (16)0.0664 (19)0.0031 (13)0.0213 (14)0.0090 (14)
C90.0403 (14)0.0547 (16)0.0480 (16)0.0000 (12)0.0117 (12)0.0059 (13)
C100.0415 (14)0.0390 (13)0.0423 (14)0.0035 (11)0.0152 (11)0.0154 (11)
C110.0445 (15)0.0440 (14)0.0428 (14)0.0037 (11)0.0184 (12)0.0129 (12)
C120.0531 (17)0.0618 (18)0.0483 (16)0.0021 (14)0.0115 (14)0.0061 (14)
C130.0642 (19)0.0470 (16)0.0542 (17)0.0030 (14)0.0301 (15)0.0131 (13)
C140.081 (2)0.0560 (19)0.0578 (19)0.0255 (17)0.0242 (17)0.0149 (15)
C150.084 (2)0.0486 (17)0.064 (2)0.0142 (16)0.0320 (18)0.0232 (15)
C160.0379 (13)0.0397 (13)0.0357 (13)0.0011 (11)0.0113 (10)0.0089 (11)
C170.0385 (13)0.0411 (13)0.0395 (14)0.0018 (11)0.0076 (11)0.0133 (11)
C180.0478 (15)0.0456 (14)0.0377 (14)0.0022 (12)0.0159 (12)0.0108 (12)
C190.0393 (14)0.0410 (13)0.0462 (15)0.0006 (11)0.0165 (12)0.0070 (11)
C200.0430 (14)0.0423 (14)0.0457 (15)0.0013 (11)0.0090 (12)0.0128 (12)
C210.0481 (15)0.0426 (14)0.0360 (13)0.0014 (12)0.0134 (11)0.0120 (11)
O30.183 (4)0.180 (4)0.144 (3)0.071 (3)0.129 (3)0.092 (3)
O40.135 (3)0.0709 (19)0.176 (4)0.0274 (18)0.062 (3)0.055 (2)
O50.128 (2)0.0620 (15)0.127 (2)0.0147 (16)0.085 (2)0.0174 (16)
N30.0731 (18)0.0680 (18)0.0660 (17)0.0236 (14)0.0354 (15)0.0309 (15)
Geometric parameters (Å, º) top
Cl1—C171.741 (3)C8—H8A0.9700
N1—C131.322 (3)C8—H8B0.9700
N1—C151.373 (4)C9—H9A0.9700
N1—C111.447 (3)C9—H9B0.9700
O1—C61.379 (3)C10—C111.339 (4)
O1—C81.427 (3)C10—C161.486 (3)
C1—C21.385 (4)C11—C121.500 (4)
C1—C61.391 (4)C12—H12A0.9600
C1—H1A0.9300C12—H12B0.9600
Cl2—C191.736 (3)C12—H12C0.9600
O2—C101.367 (3)C13—H13A0.9300
O2—C91.434 (3)C14—C151.342 (5)
N2—C131.304 (4)C14—H14A0.9300
N2—C141.344 (4)C15—H15A0.9300
N2—H2A0.8600C16—C211.391 (4)
C2—C31.381 (5)C16—C171.403 (4)
C2—H2B0.9300C17—C181.374 (4)
C3—C41.386 (5)C18—C191.383 (4)
C3—C71.513 (5)C18—H18A0.9300
C4—C51.374 (4)C19—C201.380 (4)
C4—H4A0.9300C20—C211.381 (4)
C5—C61.386 (4)C20—H20A0.9300
C5—H5A0.9300C21—H21A0.9300
C7—H7A0.9600O3—N31.189 (4)
C7—H7B0.9600O4—N31.215 (4)
C7—H7C0.9600O5—N31.227 (4)
C8—C91.496 (4)
C13—N1—C15108.1 (2)H9A—C9—H9B107.8
C13—N1—C11125.4 (2)C11—C10—O2118.1 (2)
C15—N1—C11126.5 (2)C11—C10—C16122.7 (2)
C6—O1—C8118.6 (2)O2—C10—C16119.1 (2)
C2—C1—C6118.8 (3)C10—C11—N1116.8 (2)
C2—C1—H1A120.6C10—C11—C12128.5 (2)
C6—C1—H1A120.6N1—C11—C12114.8 (2)
C10—O2—C9117.7 (2)C11—C12—H12A109.5
C13—N2—C14109.5 (3)C11—C12—H12B109.5
C13—N2—H2A125.3H12A—C12—H12B109.5
C14—N2—H2A125.3C11—C12—H12C109.5
C3—C2—C1122.4 (3)H12A—C12—H12C109.5
C3—C2—H2B118.8H12B—C12—H12C109.5
C1—C2—H2B118.8N2—C13—N1108.5 (3)
C2—C3—C4117.4 (3)N2—C13—H13A125.7
C2—C3—C7121.3 (3)N1—C13—H13A125.7
C4—C3—C7121.3 (3)C15—C14—N2107.5 (3)
C5—C4—C3121.7 (3)C15—C14—H14A126.3
C5—C4—H4A119.2N2—C14—H14A126.3
C3—C4—H4A119.2C14—C15—N1106.4 (3)
C4—C5—C6120.0 (3)C14—C15—H15A126.8
C4—C5—H5A120.0N1—C15—H15A126.8
C6—C5—H5A120.0C21—C16—C17117.5 (2)
O1—C6—C5115.3 (2)C21—C16—C10119.8 (2)
O1—C6—C1125.1 (3)C17—C16—C10122.7 (2)
C5—C6—C1119.6 (3)C18—C17—C16121.1 (2)
C3—C7—H7A109.5C18—C17—Cl1118.0 (2)
C3—C7—H7B109.5C16—C17—Cl1120.9 (2)
H7A—C7—H7B109.5C17—C18—C19119.5 (2)
C3—C7—H7C109.5C17—C18—H18A120.3
H7A—C7—H7C109.5C19—C18—H18A120.3
H7B—C7—H7C109.5C20—C19—C18121.3 (2)
O1—C8—C9107.8 (2)C20—C19—Cl2119.8 (2)
O1—C8—H8A110.1C18—C19—Cl2118.9 (2)
C9—C8—H8A110.1C19—C20—C21118.3 (2)
O1—C8—H8B110.1C19—C20—H20A120.8
C9—C8—H8B110.1C21—C20—H20A120.8
H8A—C8—H8B108.5C20—C21—C16122.2 (2)
O2—C9—C8113.2 (2)C20—C21—H21A118.9
O2—C9—H9A108.9C16—C21—H21A118.9
C8—C9—H9A108.9O3—N3—O4122.8 (4)
O2—C9—H9B108.9O3—N3—O5119.1 (3)
C8—C9—H9B108.9O4—N3—O5118.0 (3)
C6—C1—C2—C30.6 (5)C14—N2—C13—N11.0 (4)
C1—C2—C3—C41.8 (5)C15—N1—C13—N20.8 (4)
C1—C2—C3—C7179.2 (3)C11—N1—C13—N2178.6 (3)
C2—C3—C4—C52.2 (5)C13—N2—C14—C150.9 (4)
C7—C3—C4—C5178.8 (3)N2—C14—C15—N10.4 (4)
C3—C4—C5—C60.2 (5)C13—N1—C15—C140.2 (4)
C8—O1—C6—C5177.2 (3)C11—N1—C15—C14179.2 (3)
C8—O1—C6—C10.8 (4)C11—C10—C16—C2156.0 (4)
C4—C5—C6—O1175.8 (3)O2—C10—C16—C21126.9 (3)
C4—C5—C6—C12.3 (4)C11—C10—C16—C17122.3 (3)
C2—C1—C6—O1175.3 (3)O2—C10—C16—C1754.9 (3)
C2—C1—C6—C52.7 (4)C21—C16—C17—C181.8 (4)
C6—O1—C8—C9162.1 (2)C10—C16—C17—C18176.5 (2)
C10—O2—C9—C870.2 (3)C21—C16—C17—Cl1178.48 (19)
O1—C8—C9—O259.3 (3)C10—C16—C17—Cl13.2 (4)
C9—O2—C10—C11141.4 (2)C16—C17—C18—C190.3 (4)
C9—O2—C10—C1641.2 (3)Cl1—C17—C18—C19179.9 (2)
O2—C10—C11—N14.6 (4)C17—C18—C19—C201.3 (4)
C16—C10—C11—N1178.2 (2)C17—C18—C19—Cl2179.39 (19)
O2—C10—C11—C12175.2 (3)C18—C19—C20—C211.5 (4)
C16—C10—C11—C122.0 (4)Cl2—C19—C20—C21179.2 (2)
C13—N1—C11—C1078.8 (4)C19—C20—C21—C160.0 (4)
C15—N1—C11—C10100.4 (3)C17—C16—C21—C201.6 (4)
C13—N1—C11—C12101.3 (3)C10—C16—C21—C20176.7 (2)
C15—N1—C11—C1279.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.553.218 (5)135
N2—H2A···O5i0.861.852.703 (5)170
C13—H13A···O5ii0.932.373.188 (5)147
C21—H21A···O3ii0.932.463.337 (5)157
Symmetry codes: (i) x, y+3, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H21Cl2N2O2+·NO3
Mr466.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5300 (19), 9.924 (2), 12.449 (3)
α, β, γ (°)69.05 (3), 80.59 (3), 88.75 (3)
V3)1083.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.905, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4247, 3988, 2974
Rint0.020
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.158, 1.01
No. of reflections3988
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.553.218 (5)135
N2—H2A···O5i0.861.852.703 (5)170
C13—H13A···O5ii0.932.373.188 (5)147
C21—H21A···O3ii0.932.463.337 (5)157
Symmetry codes: (i) x, y+3, z; (ii) x, y1, z.
 

Acknowledgements

This research work was supported by the Program of Six Talent Tops Foundation of Jiangsu Province (2009 NO 2009118) and the Natural Science Basic Research Program of Higher Education in Jiangsu Province (08KJA530002).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFromtling, R. & Castaner, J. (1996). Drugs Fut. 21, 160–166.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321–1381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKurt, T., Ludwig, Z., Max, H. P., Martin, E. & Max, D. (1987). Helv. Chim. Acta, 70, 441-444.  Google Scholar
First citationLudwig, Z. & Kurt, T. (1985). US Patent Appl. US4554356.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds