organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{4-[Bis(4-bromo­phen­yl)meth­yl]piperazin-1-yl}-3-(4-bromo­phen­yl)prop-2-en-1-one

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, bCentre of Laboratory Animals, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China, and cSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 31 October 2011; accepted 15 November 2011; online 19 November 2011)

In the title mol­ecule, C26H23Br3N2O, the piperazine ring adopts a chair conformation and the C=C double bond has an E configuration. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For pharmacological properties of cinnamic acid derivatives, see: Shi et al. (2005[Shi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707-712.]); Qian et al. (2010[Qian, Y., Zhang, H.-J., Zhang, H., Xu, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991-4996.]). For the synthesis of the title compound, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]). For a related structure, see: Teng et al. (2011[Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23Br3N2O

  • Mr = 619.19

  • Monoclinic, P 21 /c

  • a = 9.956 (2) Å

  • b = 11.624 (2) Å

  • c = 21.310 (4) Å

  • β = 101.45 (3)°

  • V = 2417.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.03 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.433, Tmax = 0.633

  • 4701 measured reflections

  • 4432 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.098

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.082

  • S = 1.01

  • 4432 reflections

  • 289 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯Oi 0.93 2.60 3.480 (7) 159
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds containing a cinnamoyl moiety have drawn much attention owing to their significant pharmacological properties such as antimicrobial, anticancer and neuroprotective activities (Shi et al., 2005; Qian et al., 2010). As a part of our ongoing study of the substituent effect on the stuctures of cinnamide derivatives, we report herein the crystal structure of the title compound.

The title compound (Fig. 1) exhibits an E configulation with respect to the C19C20 ethene bond [1.320 (7) Å] with a torsion angle C18—C19—C20—C21 = -177.4 (6)°. The piperazine ring adopts a chair conformation with puchering parameters (Cremer & Pople, 1975) Q = 0.542 (6)Å, θ = 4.6 (6)° and φ = 157 (9)°. In the crystal, molecules are linked by intermolecular C—H···O interactions (Tab. 1, Fig. 2).

Related literature top

For pharmacological properties of cinnamic acid derivatives, see: Shi et al. (2005); Qian et al. (2010). For the synthesis of the title compound, see: Wu et al. (2008). For a related structure, see: Teng et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(4-bromophenyl)acrylic acid (0.908 g, 4 mmol), dimethyl sulfoxide (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-(bis(4-bromophenyl)methyl) piperazine (2.461 g, 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The title compound thus obtained was filtered and recrystallized from ethanol. The pale-yellow single crystals of the title compound used in X-ray diffraction studies were grown from a mixture of ethanol and chloroform (2:1) by slow evaporation at room temperature.

Refinement top

The hydrogen atoms were positioned geometrically with C—H distances 0.93, 0.97 and 0.98 Å for aryl, methyne and methylene type H-atoms, respectively, and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq of the carrier atom.

Structure description top

Recently, many compounds containing a cinnamoyl moiety have drawn much attention owing to their significant pharmacological properties such as antimicrobial, anticancer and neuroprotective activities (Shi et al., 2005; Qian et al., 2010). As a part of our ongoing study of the substituent effect on the stuctures of cinnamide derivatives, we report herein the crystal structure of the title compound.

The title compound (Fig. 1) exhibits an E configulation with respect to the C19C20 ethene bond [1.320 (7) Å] with a torsion angle C18—C19—C20—C21 = -177.4 (6)°. The piperazine ring adopts a chair conformation with puchering parameters (Cremer & Pople, 1975) Q = 0.542 (6)Å, θ = 4.6 (6)° and φ = 157 (9)°. In the crystal, molecules are linked by intermolecular C—H···O interactions (Tab. 1, Fig. 2).

For pharmacological properties of cinnamic acid derivatives, see: Shi et al. (2005); Qian et al. (2010). For the synthesis of the title compound, see: Wu et al. (2008). For a related structure, see: Teng et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and numbering scheme of the title compound; displacement ellipsoids are drawn at the 70% probability level.
[Figure 2] Fig. 2. A view of the unit cell of the title compound showing intermolecular and intramolecular hydrogen bonds.
(E)-1-{4-[Bis(4-bromophenyl)methyl]piperazin-1-yl}-3-(4- bromophenyl)prop-2-en-1-one top
Crystal data top
C26H23Br3N2OF(000) = 1224
Mr = 619.19Dx = 1.702 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.956 (2) Åθ = 10–13°
b = 11.624 (2) ŵ = 5.03 mm1
c = 21.310 (4) ÅT = 293 K
β = 101.45 (3)°Block, pale-yellow
V = 2417.1 (8) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2081 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.098
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.433, Tmax = 0.633l = 2525
4701 measured reflections3 standard reflections every 200 reflections
4432 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0185P)2]
where P = (Fo2 + 2Fc2)/3
4432 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
C26H23Br3N2OV = 2417.1 (8) Å3
Mr = 619.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.956 (2) ŵ = 5.03 mm1
b = 11.624 (2) ÅT = 293 K
c = 21.310 (4) Å0.20 × 0.10 × 0.10 mm
β = 101.45 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2081 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.098
Tmin = 0.433, Tmax = 0.6333 standard reflections every 200 reflections
4701 measured reflections intensity decay: 1%
4432 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0692 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
4432 reflectionsΔρmin = 0.42 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.4281 (4)0.8456 (3)0.49348 (19)0.0564 (13)
Br10.93912 (8)0.12182 (7)0.72681 (4)0.0763 (3)
N10.3393 (5)0.7165 (5)0.5513 (3)0.0582 (15)
C10.5229 (6)0.5927 (5)0.6057 (3)0.059 (2)
H1A0.58590.53280.59840.071*
H1B0.57670.65730.62570.071*
Br20.16720 (8)0.29610 (8)0.88918 (3)0.0834 (3)
N20.4370 (5)0.5493 (4)0.6490 (2)0.0443 (13)
C20.4386 (6)0.6302 (5)0.5429 (3)0.0562 (18)
H2A0.49840.66110.51620.067*
H2B0.39130.56410.52110.067*
Br30.05208 (8)1.44635 (7)0.58711 (4)0.0847 (3)
C30.2520 (6)0.6816 (5)0.5959 (3)0.0557 (19)
H3A0.19020.62100.57680.067*
H3B0.19750.74650.60480.067*
C40.3417 (6)0.6387 (5)0.6579 (3)0.0549 (18)
H4A0.39290.70320.67950.066*
H4B0.28290.60980.68560.066*
C50.5188 (6)0.5151 (5)0.7109 (3)0.0510 (18)
H5A0.56320.58430.73160.061*
C60.6277 (6)0.4288 (5)0.7081 (3)0.0457 (16)
C70.6099 (5)0.3340 (5)0.6655 (3)0.0483 (17)
H7A0.53090.33150.63370.058*
C80.7002 (7)0.2476 (6)0.6681 (3)0.0563 (19)
H8A0.68390.18760.63870.068*
C90.8187 (6)0.2489 (5)0.7156 (3)0.0473 (17)
C100.8421 (6)0.3419 (6)0.7559 (3)0.059 (2)
H10A0.92320.34600.78620.071*
C110.7479 (6)0.4292 (6)0.7522 (3)0.0563 (19)
H11A0.76650.49050.78060.068*
C120.4301 (6)0.4650 (5)0.7545 (3)0.0461 (16)
C130.4486 (6)0.4907 (6)0.8175 (3)0.062 (2)
H13A0.51430.54550.83400.075*
C140.3732 (6)0.4388 (6)0.8595 (3)0.062 (2)
H14A0.39080.45640.90290.075*
C150.2737 (7)0.3620 (6)0.8339 (3)0.0552 (19)
C160.2504 (6)0.3338 (5)0.7715 (3)0.0543 (18)
H16A0.18230.28100.75500.065*
C170.3289 (6)0.3840 (5)0.7315 (3)0.0494 (17)
H17A0.31350.36310.68860.059*
C180.3496 (7)0.8259 (6)0.5292 (3)0.0500 (17)
C190.2533 (6)0.9125 (5)0.5439 (3)0.0452 (17)
H19A0.17410.88930.55730.054*
C200.2785 (6)1.0231 (6)0.5384 (3)0.0491 (17)
H20A0.35741.04000.52310.059*
C210.2005 (6)1.1230 (6)0.5527 (3)0.0466 (16)
C220.2556 (6)1.2308 (6)0.5522 (3)0.0543 (18)
H22A0.34491.23900.54600.065*
C230.1802 (7)1.3288 (6)0.5610 (3)0.061 (2)
H23A0.21671.40200.55880.074*
C240.0504 (7)1.3141 (6)0.5729 (3)0.0522 (18)
C250.0090 (7)1.2091 (6)0.5737 (3)0.0583 (19)
H25A0.09831.20110.58000.070*
C260.0699 (6)1.1140 (6)0.5648 (3)0.0586 (19)
H26A0.03291.04110.56710.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.067 (3)0.065 (3)0.043 (3)0.005 (2)0.024 (2)0.008 (2)
Br10.0670 (5)0.0714 (5)0.0907 (7)0.0136 (4)0.0157 (4)0.0143 (5)
N10.065 (4)0.053 (4)0.060 (4)0.011 (3)0.019 (3)0.011 (3)
C10.061 (5)0.067 (5)0.052 (5)0.016 (4)0.017 (4)0.003 (4)
Br20.0751 (6)0.1359 (8)0.0414 (5)0.0163 (6)0.0169 (4)0.0266 (5)
N20.051 (3)0.052 (3)0.028 (3)0.008 (3)0.004 (2)0.007 (3)
C20.063 (4)0.061 (4)0.048 (5)0.004 (4)0.019 (4)0.007 (4)
Br30.0988 (7)0.0678 (5)0.0948 (7)0.0127 (5)0.0369 (5)0.0054 (5)
C30.049 (4)0.060 (5)0.059 (5)0.003 (4)0.014 (4)0.021 (4)
C40.059 (4)0.051 (4)0.063 (5)0.008 (4)0.030 (4)0.016 (4)
C50.044 (4)0.059 (4)0.049 (5)0.001 (3)0.004 (3)0.012 (4)
C60.054 (4)0.048 (4)0.035 (4)0.012 (4)0.008 (3)0.002 (4)
C70.025 (3)0.065 (5)0.050 (4)0.011 (3)0.005 (3)0.001 (4)
C80.063 (5)0.054 (5)0.052 (5)0.005 (4)0.012 (4)0.007 (4)
C90.044 (4)0.043 (4)0.055 (5)0.001 (3)0.011 (4)0.014 (4)
C100.035 (4)0.070 (5)0.073 (6)0.010 (4)0.015 (4)0.007 (4)
C110.043 (4)0.070 (5)0.053 (5)0.008 (4)0.002 (3)0.011 (4)
C120.048 (4)0.046 (4)0.042 (5)0.004 (3)0.003 (3)0.007 (3)
C130.062 (5)0.075 (5)0.042 (5)0.017 (4)0.009 (4)0.008 (4)
C140.055 (5)0.096 (6)0.033 (5)0.017 (4)0.001 (4)0.006 (4)
C150.065 (5)0.083 (5)0.022 (4)0.016 (4)0.019 (3)0.007 (4)
C160.057 (4)0.064 (5)0.042 (4)0.000 (4)0.010 (3)0.009 (4)
C170.052 (4)0.071 (4)0.026 (4)0.003 (4)0.011 (3)0.008 (4)
C180.060 (4)0.056 (4)0.034 (4)0.004 (4)0.009 (3)0.017 (4)
C190.040 (3)0.063 (5)0.032 (4)0.005 (4)0.005 (3)0.013 (3)
C200.050 (4)0.062 (5)0.033 (4)0.013 (4)0.000 (3)0.016 (4)
C210.065 (4)0.056 (4)0.019 (4)0.000 (4)0.009 (3)0.001 (3)
C220.049 (4)0.068 (5)0.039 (4)0.013 (4)0.007 (3)0.006 (4)
C230.068 (5)0.064 (5)0.051 (5)0.009 (4)0.009 (4)0.005 (4)
C240.074 (5)0.050 (4)0.026 (4)0.005 (4)0.007 (3)0.011 (3)
C250.062 (5)0.069 (5)0.045 (4)0.002 (4)0.012 (3)0.008 (4)
C260.053 (4)0.057 (5)0.071 (5)0.003 (4)0.022 (4)0.015 (4)
Geometric parameters (Å, º) top
O—C181.216 (6)C9—C101.372 (8)
Br1—C91.887 (6)C10—C111.373 (7)
N1—C181.368 (7)C10—H10A0.9300
N1—C21.444 (7)C11—H11A0.9300
N1—C31.466 (6)C12—C131.351 (7)
C1—N21.467 (6)C12—C171.394 (7)
C1—C21.498 (7)C13—C141.413 (6)
C1—H1A0.9700C13—H13A0.9300
C1—H1B0.9700C14—C151.365 (8)
Br2—C151.897 (6)C14—H14A0.9300
N2—C41.445 (6)C15—C161.344 (8)
N2—C51.460 (7)C16—C171.393 (7)
C2—H2A0.9700C16—H16A0.9300
C2—H2B0.9700C17—H17A0.9300
Br3—C241.902 (6)C18—C191.466 (7)
C3—C41.524 (7)C19—C201.320 (7)
C3—H3A0.9700C19—H19A0.9300
C3—H3B0.9700C20—C211.462 (8)
C4—H4A0.9700C20—H20A0.9300
C4—H4B0.9700C21—C221.368 (8)
C5—C61.488 (7)C21—C261.379 (7)
C5—C121.520 (7)C22—C231.396 (7)
C5—H5A0.9800C22—H22A0.9300
C6—C111.367 (7)C23—C241.377 (7)
C6—C71.417 (6)C23—H23A0.9300
C7—C81.341 (7)C24—C251.358 (7)
C7—H7A0.9300C25—C261.390 (7)
C8—C91.394 (8)C25—H25A0.9300
C8—H8A0.9300C26—H26A0.9300
C18—N1—C2120.2 (5)C11—C10—H10A119.4
C18—N1—C3125.1 (6)C6—C11—C10122.1 (7)
C2—N1—C3113.4 (5)C6—C11—H11A119.0
N2—C1—C2111.6 (5)C10—C11—H11A119.0
N2—C1—H1A109.3C13—C12—C17116.4 (6)
C2—C1—H1A109.3C13—C12—C5122.8 (6)
N2—C1—H1B109.3C17—C12—C5120.7 (6)
C2—C1—H1B109.3C12—C13—C14123.4 (7)
H1A—C1—H1B108.0C12—C13—H13A118.3
C4—N2—C5110.0 (5)C14—C13—H13A118.3
C4—N2—C1108.3 (5)C15—C14—C13117.4 (6)
C5—N2—C1111.8 (5)C15—C14—H14A121.3
N1—C2—C1111.5 (5)C13—C14—H14A121.3
N1—C2—H2A109.3C16—C15—C14121.6 (6)
C1—C2—H2A109.3C16—C15—Br2120.6 (6)
N1—C2—H2B109.3C14—C15—Br2117.8 (5)
C1—C2—H2B109.3C15—C16—C17119.7 (6)
H2A—C2—H2B108.0C15—C16—H16A120.2
N1—C3—C4109.3 (5)C17—C16—H16A120.2
N1—C3—H3A109.8C16—C17—C12121.4 (6)
C4—C3—H3A109.8C16—C17—H17A119.3
N1—C3—H3B109.8C12—C17—H17A119.3
C4—C3—H3B109.8O—C18—N1119.5 (6)
H3A—C3—H3B108.3O—C18—C19122.3 (6)
N2—C4—C3114.2 (5)N1—C18—C19117.9 (6)
N2—C4—H4A108.7C20—C19—C18120.4 (6)
C3—C4—H4A108.7C20—C19—H19A119.8
N2—C4—H4B108.7C18—C19—H19A119.8
C3—C4—H4B108.7C19—C20—C21129.6 (6)
H4A—C4—H4B107.6C19—C20—H20A115.2
N2—C5—C6115.4 (5)C21—C20—H20A115.2
N2—C5—C12111.6 (5)C22—C21—C26117.7 (6)
C6—C5—C12106.4 (5)C22—C21—C20119.7 (6)
N2—C5—H5A107.7C26—C21—C20122.5 (6)
C6—C5—H5A107.7C21—C22—C23121.3 (6)
C12—C5—H5A107.7C21—C22—H22A119.4
C11—C6—C7115.2 (6)C23—C22—H22A119.4
C11—C6—C5121.1 (6)C24—C23—C22118.2 (6)
C7—C6—C5123.4 (6)C24—C23—H23A120.9
C8—C7—C6123.9 (6)C22—C23—H23A120.9
C8—C7—H7A118.1C25—C24—C23122.7 (6)
C6—C7—H7A118.1C25—C24—Br3118.4 (6)
C7—C8—C9119.1 (6)C23—C24—Br3118.8 (5)
C7—C8—H8A120.4C24—C25—C26117.0 (6)
C9—C8—H8A120.4C24—C25—H25A121.5
C10—C9—C8118.5 (6)C26—C25—H25A121.5
C10—C9—Br1120.9 (5)C21—C26—C25123.0 (6)
C8—C9—Br1120.6 (5)C21—C26—H26A118.5
C9—C10—C11121.2 (6)C25—C26—H26A118.5
C9—C10—H10A119.4
C2—C1—N2—C457.4 (7)C6—C5—C12—C1780.8 (7)
C2—C1—N2—C5178.7 (5)C17—C12—C13—C141.1 (10)
C18—N1—C2—C1114.1 (6)C5—C12—C13—C14175.5 (6)
C3—N1—C2—C153.7 (7)C12—C13—C14—C152.4 (10)
N2—C1—C2—N156.8 (7)C13—C14—C15—C161.9 (10)
C18—N1—C3—C4116.3 (7)C13—C14—C15—Br2177.7 (5)
C2—N1—C3—C450.7 (7)C14—C15—C16—C170.2 (10)
C5—N2—C4—C3179.4 (5)Br2—C15—C16—C17179.4 (5)
C1—N2—C4—C357.0 (7)C15—C16—C17—C121.2 (10)
N1—C3—C4—N253.7 (7)C13—C12—C17—C160.7 (9)
C4—N2—C5—C6176.0 (5)C5—C12—C17—C16177.4 (6)
C1—N2—C5—C655.7 (7)C2—N1—C18—O11.9 (10)
C4—N2—C5—C1262.3 (6)C3—N1—C18—O178.2 (6)
C1—N2—C5—C12177.3 (5)C2—N1—C18—C19174.8 (5)
N2—C5—C6—C11147.7 (6)C3—N1—C18—C198.5 (10)
C12—C5—C6—C1187.9 (7)O—C18—C19—C2023.9 (10)
N2—C5—C6—C739.8 (8)N1—C18—C19—C20162.9 (6)
C12—C5—C6—C784.6 (7)C18—C19—C20—C21177.4 (6)
C11—C6—C7—C82.1 (9)C19—C20—C21—C22170.6 (6)
C5—C6—C7—C8170.8 (6)C19—C20—C21—C2611.8 (10)
C6—C7—C8—C90.6 (10)C26—C21—C22—C232.6 (9)
C7—C8—C9—C103.4 (9)C20—C21—C22—C23175.2 (6)
C7—C8—C9—Br1173.4 (4)C21—C22—C23—C242.7 (9)
C8—C9—C10—C113.6 (9)C22—C23—C24—C252.9 (10)
Br1—C9—C10—C11173.2 (5)C22—C23—C24—Br3178.4 (5)
C7—C6—C11—C101.9 (9)C23—C24—C25—C262.9 (10)
C5—C6—C11—C10171.2 (5)Br3—C24—C25—C26178.4 (5)
C9—C10—C11—C60.9 (10)C22—C21—C26—C252.7 (10)
N2—C5—C12—C13137.7 (6)C20—C21—C26—C25175.0 (6)
C6—C5—C12—C1395.7 (7)C24—C25—C26—C212.8 (10)
N2—C5—C12—C1745.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···Oi0.932.603.480 (7)159
C2—H2A···O0.972.282.710 (7)106
C20—H20A···O0.932.492.821 (8)101
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H23Br3N2O
Mr619.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.956 (2), 11.624 (2), 21.310 (4)
β (°) 101.45 (3)
V3)2417.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)5.03
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.433, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
4701, 4432, 2081
Rint0.098
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.082, 1.01
No. of reflections4432
No. of parameters289
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···Oi0.932.603.480 (7)159
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of the Education Department of Jiangsu Province (No. 05KJB350084) and the Natural Science Foundation of Jiangsu Province (No. BK2010538).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationQian, Y., Zhang, H.-J., Zhang, H., Xu, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991–4996.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707–712.  CrossRef CAS Google Scholar
First citationTeng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds