metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(4,7-di­aza­decane-1,10-di­amine)­copper(II)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 8 August 2011; accepted 10 August 2011; online 17 August 2011)

In the title compound, [CuBr2(C8H22N4)], the CuII atom is six-coordinate forming a distorted octa­hedral complex and is bonded to two axial bromide anions and four equatorial nitro­gen donors. The equatorial Cu—N bond distances range from 2.005 (8) to 2.046 (8) Å while the axial Cu—Br distances are 2.8616 (17) and 2.9402 (17) Å, thus the six-coordinate Cu complex shows the usual Jahn–Teller distortion. All amine hydrogen atoms participate in either inter- or intra­molecular hydrogen bonding to the Br anions.

Related literature

For related structues, see: Lee et al. (1986[Lee, T.-Y., Lee, T.-J., Hong, C.-Y., Hsieh, M.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 1316-1319.]). For other related literature, see: Jahn & Teller (1937[Jahn, H. & Teller, E. (1937). Proc. R. Soc. London Ser. A, pp. 220-235.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C8H22N4)]

  • Mr = 397.66

  • Orthorhombic, P 21 21 21

  • a = 6.9666 (4) Å

  • b = 8.4146 (6) Å

  • c = 24.0261 (15) Å

  • V = 1408.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.20 mm−1

  • T = 110 K

  • 0.47 × 0.31 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.157, Tmax = 0.282

  • 9561 measured reflections

  • 2758 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.183

  • S = 1.07

  • 2758 reflections

  • 136 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 2.51 e Å−3

  • Δρmin = −1.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Br2i 0.92 2.66 3.466 (9) 147
N1—H1D⋯Br2 0.92 2.80 3.339 (8) 119
N2—H2C⋯Br1ii 0.93 2.66 3.407 (8) 138
N2—H2C⋯Br2 0.93 3.01 3.519 (7) 116
N3—H3C⋯Br1 0.93 2.90 3.409 (8) 116
N4—H4C⋯Br2i 0.92 2.60 3.515 (8) 171
N4—H4D⋯Br2iii 0.92 2.69 3.425 (8) 138
N4—H4D⋯Br1 0.92 2.94 3.433 (8) 115
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this study, the title compound was prepared and its structure determined by X-ray analysis. Owing to the Jahn-Teller distortion (Jahn & Teller, 1937), the Cu(II) center adopts an axially distorted octahedral CuN4Br2 conformation with the axial positions are occupied by the bromide anions. The equatorial positions are occupied by the N4 set of donor nitrogen atoms and the Cu1 lies in the N4 plane; maximum deviation of any atom from the mean-plane formed by CuN4 fragment being 0.042 (4) for N3. The structure of a related compound containing the same linear tetramine, has been reported (Lee et al. 1986) and its structural features compared with those of other linear Cu(II) aliphatic tetraamines of the type H2N(CH2)lNH-(CH2)mNH(CH2)nNH2 where l, m and n are 2 or 3. From this it can be seen that in the title complex, the equatorial Cu—N bond distances range from 2.005 (8) to 2.046 (8) Å and are in the normal range for such bonds. However, the axial Cu—Br distances are elongated at 2.8616 (17) and 2.9402 (17) Å, thus the 6-coordinate Cu complex shows the usual Jahn-Teller distortion. All amine H's participate in either inter or intramolecular hydrogen bonding to the Br anions.

Related literature top

For related structues, see: Lee et al. (1986). For other related literature, see: Jahn & Teller (1937).

Experimental top

The title compound was obtained as a byproduct of an attempt to prepare copper complexes of ethylenediamine N,N-bis(propylsalicylaldimine). A solution of N, N-bis(3-aminopropylethylene)diamine (5 g, 30.52 mmol) in methanol (20 ml) was added dropwise to a solution of salicylaldehyde (7.45 g, 61.04 mmol) in methanol (20 ml). The mixture was refluxed overnight while stirring with magnetic stirrer. Then the reaction mixture was evaporated under reduced pressure. An oily orange product was obtained which later solidified into a yellow compound, [2-(3-amino-propylamino)-ethyl]-propane-1,3-diamine-bis(salicyladimine), used as a ligand (H2L4) in the subsequent reaction. The synthesis of the title complex was achieved by the reaction of CuBr (1.5 g, 10.5 mmol) in methanol (20 ml) with of the ligand H2L4 (2 g, 5.2 mmol) dissolved in CH2Cl2 (25 ml). The ligand solution was added drop-wise to the solution of the metal salt and stirred at room temperature for 24 h. The mixture was then concentrated by evaporation under reduced pressure to afford a thick greenish liquid. Part of the complex was dissolved in dimethyl formamide (DMF), filtered and layered with diethyl ether for slow diffusion and X-ray quality crystals were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.99 Å and N—H distances of 0.92 (primary amine) and 0.93 (secondary amine) with Uiso(H) = 1.2Ueq(C, N). Even though a face-indexed absorption correction was carried out, the thermal parameters for C3, C6, C7, and N4 atoms did not behave well and thus were restrained using ISOR command in SHELXL. The crystal was originally refined as a racemic twin with components 0.87 (3):0.13 (3). However, as the absolute configuration was not established unambiguously, the data were merged. In addition, the highest peak (2.50 e-3, 0.70 Å from Cu) and deepest hole (-1.98 e-3, 0.54 Å from Br2) are indicative of the problems with both the racemic twinning and absorption effects.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title complex showing atom labeling. Thermal ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound viewed down the a axis. Hydrogen bonds are showed by dashed lines.
Dibromido(4,7-diazadecane-1,10-diamine)copper(II) top
Crystal data top
[CuBr2(C8H22N4)]F(000) = 788
Mr = 397.66Dx = 1.875 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4805 reflections
a = 6.9666 (4) Åθ = 4.6–32.8°
b = 8.4146 (6) ŵ = 7.20 mm1
c = 24.0261 (15) ÅT = 110 K
V = 1408.45 (15) Å3Prism, dark blue
Z = 40.47 × 0.31 × 0.22 mm
Data collection top
Goniometer Xcalibur, detector Ruby (Gemini Mo)
diffractometer
2758 independent reflections
Radiation source: Enhance (Mo) X-ray Source2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 4.6°
ω scansh = 109
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1211
Tmin = 0.157, Tmax = 0.282l = 3635
9561 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.103P)2 + 8.8289P]
where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 2.51 e Å3
24 restraintsΔρmin = 1.98 e Å3
Crystal data top
[CuBr2(C8H22N4)]V = 1408.45 (15) Å3
Mr = 397.66Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9666 (4) ŵ = 7.20 mm1
b = 8.4146 (6) ÅT = 110 K
c = 24.0261 (15) Å0.47 × 0.31 × 0.22 mm
Data collection top
Goniometer Xcalibur, detector Ruby (Gemini Mo)
diffractometer
2758 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2007)
2262 reflections with I > 2σ(I)
Tmin = 0.157, Tmax = 0.282Rint = 0.072
9561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07124 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.07Δρmax = 2.51 e Å3
2758 reflectionsΔρmin = 1.98 e Å3
136 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.84387 (19)0.88632 (13)0.11140 (4)0.0099 (2)
Br11.15943 (15)1.06828 (12)0.15326 (4)0.0187 (2)
Br20.52369 (16)0.69368 (14)0.06892 (5)0.0225 (3)
N10.8009 (12)1.0062 (10)0.0394 (3)0.0132 (16)
H1C0.90130.98230.01600.016*
H1D0.69140.96610.02330.016*
N20.6456 (12)1.0252 (8)0.1509 (3)0.0106 (13)
H2C0.52560.99010.13920.013*
N30.8538 (13)0.7653 (9)0.1852 (3)0.0125 (14)
H3C0.96010.80350.20440.015*
N41.0360 (12)0.7415 (9)0.0756 (3)0.0110 (14)
H4C1.02150.75080.03760.013*
H4D1.15620.77960.08410.013*
C10.7815 (17)1.1841 (12)0.0409 (4)0.0178 (19)
H1A0.90311.23160.05420.021*
H1B0.75711.22400.00280.021*
C20.6201 (14)1.2343 (11)0.0785 (4)0.0143 (18)
H2A0.50181.17860.06660.017*
H2B0.59831.34960.07340.017*
C30.6518 (15)1.2020 (11)0.1399 (4)0.0123 (15)
H3A0.77801.24510.15140.015*
H3B0.55111.25590.16200.015*
C40.6583 (17)0.9909 (12)0.2110 (4)0.0160 (17)
H4A0.54071.02790.23020.019*
H4B0.77001.04670.22740.019*
C50.6801 (16)0.8160 (13)0.2179 (4)0.0179 (19)
H5A0.56440.76060.20390.021*
H5B0.69700.78910.25770.021*
C60.8734 (14)0.5888 (11)0.1836 (4)0.0138 (18)
H6A0.75840.54210.16580.017*
H6B0.88130.54730.22210.017*
C71.0503 (15)0.5394 (11)0.1517 (4)0.0158 (18)
H7A1.07390.42480.15810.019*
H7B1.16230.59860.16630.019*
C81.0339 (15)0.5691 (11)0.0892 (4)0.0142 (17)
H8A1.14190.51610.07000.017*
H8B0.91300.52160.07540.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0119 (5)0.0064 (4)0.0113 (4)0.0022 (4)0.0026 (4)0.0007 (4)
Br10.0107 (4)0.0185 (5)0.0270 (5)0.0016 (4)0.0007 (4)0.0062 (4)
Br20.0169 (5)0.0213 (5)0.0293 (5)0.0013 (4)0.0023 (4)0.0026 (4)
N10.011 (4)0.011 (4)0.017 (4)0.004 (3)0.001 (3)0.002 (3)
N20.010 (3)0.005 (3)0.017 (3)0.001 (3)0.001 (3)0.001 (3)
N30.011 (3)0.012 (3)0.015 (3)0.001 (3)0.003 (3)0.002 (3)
N40.008 (3)0.009 (3)0.016 (3)0.002 (2)0.002 (2)0.000 (2)
C10.023 (5)0.012 (4)0.018 (4)0.002 (4)0.003 (4)0.005 (4)
C20.012 (4)0.005 (3)0.026 (5)0.004 (3)0.001 (3)0.002 (3)
C30.012 (3)0.006 (3)0.019 (3)0.001 (3)0.001 (3)0.002 (3)
C40.017 (4)0.021 (4)0.010 (3)0.002 (4)0.004 (4)0.002 (3)
C50.019 (5)0.020 (4)0.015 (4)0.006 (4)0.006 (4)0.003 (4)
C60.016 (4)0.009 (3)0.017 (3)0.003 (3)0.002 (3)0.004 (3)
C70.020 (4)0.009 (3)0.018 (3)0.005 (3)0.001 (3)0.003 (3)
C80.016 (4)0.009 (4)0.017 (4)0.004 (4)0.004 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu—N42.005 (8)C1—H1B0.9900
Cu—N12.025 (8)C2—C31.517 (13)
Cu—N22.043 (8)C2—H2A0.9900
Cu—N32.046 (8)C2—H2B0.9900
Cu—Br12.8616 (17)C3—H3A0.9900
Cu—Br22.9402 (17)C3—H3B0.9900
N1—C11.503 (13)C4—C51.489 (15)
N1—H1C0.9200C4—H4A0.9900
N1—H1D0.9200C4—H4B0.9900
N2—C41.476 (12)C5—H5A0.9900
N2—C31.512 (11)C5—H5B0.9900
N2—H2C0.9300C6—C71.510 (14)
N3—C61.492 (11)C6—H6A0.9900
N3—C51.504 (13)C6—H6B0.9900
N3—H3C0.9300C7—C81.526 (14)
N4—C81.487 (12)C7—H7A0.9900
N4—H4C0.9200C7—H7B0.9900
N4—H4D0.9200C8—H8A0.9900
C1—C21.503 (14)C8—H8B0.9900
C1—H1A0.9900
N4—Cu—N192.0 (3)H1A—C1—H1B108.0
N4—Cu—N2177.1 (3)C1—C2—C3115.2 (8)
N1—Cu—N290.7 (3)C1—C2—H2A108.5
N4—Cu—N392.7 (3)C3—C2—H2A108.5
N1—Cu—N3173.4 (4)C1—C2—H2B108.5
N2—Cu—N384.6 (3)C3—C2—H2B108.5
N4—Cu—Br187.9 (2)H2A—C2—H2B107.5
N1—Cu—Br198.5 (2)N2—C3—C2110.0 (7)
N2—Cu—Br192.9 (2)N2—C3—H3A109.7
N3—Cu—Br186.3 (3)C2—C3—H3A109.7
N4—Cu—Br291.3 (2)N2—C3—H3B109.7
N1—Cu—Br282.3 (2)C2—C3—H3B109.7
N2—Cu—Br287.9 (2)H3A—C3—H3B108.2
N3—Cu—Br293.0 (3)N2—C4—C5107.9 (8)
Br1—Cu—Br2178.89 (6)N2—C4—H4A110.1
C1—N1—Cu119.3 (7)C5—C4—H4A110.1
C1—N1—H1C107.5N2—C4—H4B110.1
Cu—N1—H1C107.5C5—C4—H4B110.1
C1—N1—H1D107.5H4A—C4—H4B108.4
Cu—N1—H1D107.5C4—C5—N3107.7 (9)
H1C—N1—H1D107.0C4—C5—H5A110.2
C4—N2—C3111.2 (7)N3—C5—H5A110.2
C4—N2—Cu107.6 (6)C4—C5—H5B110.2
C3—N2—Cu117.6 (6)N3—C5—H5B110.2
C4—N2—H2C106.6H5A—C5—H5B108.5
C3—N2—H2C106.6N3—C6—C7111.2 (8)
Cu—N2—H2C106.6N3—C6—H6A109.4
C6—N3—C5111.7 (8)C7—C6—H6A109.4
C6—N3—Cu118.5 (6)N3—C6—H6B109.4
C5—N3—Cu106.5 (6)C7—C6—H6B109.4
C6—N3—H3C106.5H6A—C6—H6B108.0
C5—N3—H3C106.5C6—C7—C8113.1 (8)
Cu—N3—H3C106.5C6—C7—H7A109.0
C8—N4—Cu119.4 (6)C8—C7—H7A109.0
C8—N4—H4C107.5C6—C7—H7B109.0
Cu—N4—H4C107.5C8—C7—H7B109.0
C8—N4—H4D107.5H7A—C7—H7B107.8
Cu—N4—H4D107.5N4—C8—C7112.1 (8)
H4C—N4—H4D107.0N4—C8—H8A109.2
C2—C1—N1111.2 (8)C7—C8—H8A109.2
C2—C1—H1A109.4N4—C8—H8B109.2
N1—C1—H1A109.4C7—C8—H8B109.2
C2—C1—H1B109.4H8A—C8—H8B107.9
N1—C1—H1B109.4
N4—Cu—N1—C1139.1 (8)N1—Cu—N4—C8138.9 (7)
N2—Cu—N1—C142.1 (8)N3—Cu—N4—C836.5 (7)
Br1—Cu—N1—C150.9 (8)Br1—Cu—N4—C8122.7 (7)
Br2—Cu—N1—C1129.9 (8)Br2—Cu—N4—C856.6 (7)
N1—Cu—N2—C4170.1 (6)Cu—N1—C1—C257.3 (11)
N3—Cu—N2—C414.4 (6)N1—C1—C2—C367.5 (11)
Br1—Cu—N2—C471.6 (6)C4—N2—C3—C2174.8 (8)
Br2—Cu—N2—C4107.6 (6)Cu—N2—C3—C260.6 (10)
N1—Cu—N2—C343.7 (7)C1—C2—C3—N269.7 (11)
N3—Cu—N2—C3140.8 (7)C3—N2—C4—C5171.9 (9)
Br1—Cu—N2—C354.8 (6)Cu—N2—C4—C541.8 (10)
Br2—Cu—N2—C3126.0 (6)N2—C4—C5—N356.4 (11)
N4—Cu—N3—C637.2 (8)C6—N3—C5—C4172.8 (8)
N2—Cu—N3—C6141.9 (8)Cu—N3—C5—C442.0 (9)
Br1—Cu—N3—C6124.9 (7)C5—N3—C6—C7178.8 (8)
Br2—Cu—N3—C654.3 (7)Cu—N3—C6—C756.9 (10)
N4—Cu—N3—C5164.0 (7)N3—C6—C7—C870.4 (11)
N2—Cu—N3—C515.1 (6)Cu—N4—C8—C755.5 (10)
Br1—Cu—N3—C5108.3 (6)C6—C7—C8—N469.7 (11)
Br2—Cu—N3—C572.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.922.663.466 (9)147
N1—H1D···Br20.922.803.339 (8)119
N2—H2C···Br1ii0.932.663.407 (8)138
N2—H2C···Br20.933.013.519 (7)116
N3—H3C···Br10.932.903.409 (8)116
N4—H4C···Br2i0.922.603.515 (8)171
N4—H4D···Br2iii0.922.693.425 (8)138
N4—H4D···Br10.922.943.433 (8)115
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuBr2(C8H22N4)]
Mr397.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)110
a, b, c (Å)6.9666 (4), 8.4146 (6), 24.0261 (15)
V3)1408.45 (15)
Z4
Radiation typeMo Kα
µ (mm1)7.20
Crystal size (mm)0.47 × 0.31 × 0.22
Data collection
DiffractometerGoniometer Xcalibur, detector Ruby (Gemini Mo)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.157, 0.282
No. of measured, independent and
observed [I > 2σ(I)] reflections
9561, 2758, 2262
Rint0.072
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.183, 1.07
No. of reflections2758
No. of parameters136
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.51, 1.98

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.922.663.466 (9)146.5
N1—H1D···Br20.922.803.339 (8)118.8
N2—H2C···Br1ii0.932.663.407 (8)138.3
N2—H2C···Br20.933.013.519 (7)115.9
N3—H3C···Br10.932.903.409 (8)116.0
N4—H4C···Br2i0.922.603.515 (8)171.4
N4—H4D···Br2iii0.922.693.425 (8)138.0
N4—H4D···Br10.922.943.433 (8)114.9
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationJahn, H. & Teller, E. (1937). Proc. R. Soc. London Ser. A, pp. 220–235.  CrossRef Google Scholar
First citationLee, T.-Y., Lee, T.-J., Hong, C.-Y., Hsieh, M.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 1316–1319.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds