metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis{1-[2-(2,6-diiso­propyl­anilino)phenyl]-3-iso­propyl­imidazolin-2-ylidenyl-κC2}di­iodidopalladium(II) benzene disolvate

aDepartment of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England
*Correspondence e-mail: wbc2@le.ac.uk

(Received 17 April 2011; accepted 24 April 2011; online 7 May 2011)

In the title complex, [PdI2(C24H31N3)2]·2C6H6, the Pd2+ ion is located on an inversion centre in a slightly distorted square-planar geometry. The angle between the I2C2 square plane and the mean plane of the N-heterocyclic carbene ring is 79.8 (2)°, with I—Pd—C—N torsion angles of −81.1 (6) and −78.2 (5)°. The Pd—carbene and Pd—I distances are 2.016 (6) and 2.5971 (10) Å, respectively.

Related literature

For a review of N-heterocyclic carbenes in late transition metal catalysis, see: Díez-González et al. (2009[Díez-González, S., Marion, N. & Nolan, S. P. N. (2009). Chem. Rev. pp 3612-3677.]). For the synthesis of the pro-ligand and crystal structures of related complexes, see: Cross et al. (2011[Cross, W. B., Daly, C. G., Ackerman, R. L., George, I. R. & Singh, K. (2011). Dalton Trans. 40, 495-505.]).

[Scheme 1]

Experimental

Crystal data
  • [PdI2(C24H31N3)2]·2C6H6

  • Mr = 1239.45

  • Triclinic, [P \overline 1]

  • a = 8.998 (4) Å

  • b = 12.000 (5) Å

  • c = 13.839 (6) Å

  • α = 81.572 (8)°

  • β = 78.819 (9)°

  • γ = 76.411 (8)°

  • V = 1417.0 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 150 K

  • 0.16 × 0.11 × 0.06 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.338, Tmax = 0.831

  • 11207 measured reflections

  • 5500 independent reflections

  • 3317 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.128

  • S = 0.88

  • 5500 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bifunctional catalysis, in which an electrophilic metal and a nucleophilic ligand act together to activate a substrate, can enable reactions that are not possible using classical catalytic transformations that occur only at the metal centre. We are interested in catalysts in which an N-heterocyclic carbene ligand tethers a nucleophilic amido donor to the metal. Previously, we have reported tridentate amido-bis(NHC) (CNC) complexes of palladium and platinum, a bidentate amido-NHC (C,N-dipp) complex of palladium and a complex [trans-(C24H31N3)PdI2(py)], in which the amine-NHC ligand binds to Pd only through the carbene (Cross et al., 2011). In the synthesis of [trans-(C24H31N3)PdI2(py)], we isolated a single-crystal of the title complex.

The solid state structure of the title complex is shown in Fig. 1. Two NHC and two iodide ligands are coordinated to the square planar Pd, which is located at an inversion centre. The Pd-carbene distance of 2.016 (6) Å is ca 0.05 Å longer than in the corresponding complex [trans-(C24H31N3)PdI2(py)] (Cross et al., 2011), as a consequence of the strong trans- influence of the NHC ligand.

Related literature top

For a review of N-heterocyclic carbenes in late transition metal catalysis, see: Díez-González et al. (2009). For the synthesis of the pro-ligand and crystal structures of related complexes, see: Cross et al. (2011).

Experimental top

The title complex was an unexpected by-product in the synthesis of [trans-(C24H31N3)PdI2(py)] (Cross et al., 2011). Crystals of the title complex were grown by slow evaporation from benzene.

Refinement top

Hydrogen atoms were included in calculated positions at distances C—H = 0.95 to 1.00 Å and N—H = 0.88 Å in riding mode on the bonded atoms with Uiso(H) set to 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C/N) for all other H atoms. The final difference map was essentially featureless with some residual electron density in the close proximity of iodine atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with 50% probablity ellipsoids. Two molecules of benzene and H atoms except N—H have been omitted for clarity. Symmetry operation i = -x + 2, -y, -z.
trans-Bis{1-[2-(2,6-diisopropylanilino)phenyl]-3- isopropylimidazolin-2-ylidenyl-κC2}diiodidopalladium(II) benzene disolvate top
Crystal data top
[PdI2(C24H31N3)2]·2C6H6Z = 1
Mr = 1239.45F(000) = 628
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.998 (4) ÅCell parameters from 580 reflections
b = 12.000 (5) Åθ = 2.4–23.4°
c = 13.839 (6) ŵ = 1.46 mm1
α = 81.572 (8)°T = 150 K
β = 78.819 (9)°Block, yellow
γ = 76.411 (8)°0.16 × 0.11 × 0.06 mm
V = 1417.0 (10) Å3
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
5500 independent reflections
Radiation source: fine-focus sealed tube3317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.338, Tmax = 0.831k = 1414
11207 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
5500 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
[PdI2(C24H31N3)2]·2C6H6γ = 76.411 (8)°
Mr = 1239.45V = 1417.0 (10) Å3
Triclinic, P1Z = 1
a = 8.998 (4) ÅMo Kα radiation
b = 12.000 (5) ŵ = 1.46 mm1
c = 13.839 (6) ÅT = 150 K
α = 81.572 (8)°0.16 × 0.11 × 0.06 mm
β = 78.819 (9)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
5500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3317 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 0.831Rint = 0.106
11207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.88Δρmax = 0.92 e Å3
5500 reflectionsΔρmin = 1.27 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd11.00000.00000.00000.0245 (2)
I11.08790 (6)0.17737 (4)0.03915 (4)0.03773 (18)
N10.7871 (6)0.1906 (5)0.3084 (4)0.0291 (14)
H10.75520.22980.25460.035*
N20.7258 (6)0.0747 (5)0.1601 (4)0.0245 (13)
N30.6700 (6)0.1348 (5)0.0142 (4)0.0292 (14)
C10.7838 (7)0.0734 (5)0.0618 (5)0.0262 (16)
C20.5403 (8)0.1765 (6)0.0799 (5)0.0382 (19)
H20.44530.22270.06390.046*
C30.5740 (7)0.1388 (6)0.1722 (5)0.0296 (17)
H30.50710.15330.23320.036*
C40.8000 (7)0.0118 (6)0.2392 (5)0.0275 (16)
C50.8455 (8)0.1079 (6)0.2430 (5)0.0305 (17)
H50.82740.14680.19270.037*
C60.9170 (8)0.1699 (6)0.3198 (5)0.0338 (18)
H60.95300.25100.32040.041*
C70.9359 (8)0.1155 (6)0.3943 (5)0.0370 (19)
H70.97900.15910.44910.044*
C80.8928 (8)0.0033 (6)0.3907 (5)0.0319 (17)
H80.90820.03980.44330.038*
C90.8277 (7)0.0710 (6)0.3129 (5)0.0265 (16)
C100.6882 (8)0.1564 (6)0.0949 (5)0.0354 (19)
H100.78750.10560.12310.043*
C110.6985 (10)0.2798 (7)0.1303 (6)0.059 (3)
H11A0.59790.33070.11040.088*
H11B0.72630.28850.20260.088*
H11C0.77780.30020.10080.088*
C120.5553 (11)0.1221 (9)0.1295 (6)0.071 (3)
H12A0.56620.03820.11720.107*
H12B0.55850.14600.20060.107*
H12C0.45610.15990.09300.107*
C130.7948 (8)0.2525 (6)0.3867 (5)0.0264 (16)
C140.6834 (8)0.2513 (6)0.4726 (5)0.0293 (17)
C150.6914 (8)0.3156 (6)0.5452 (5)0.0370 (19)
H150.61810.31480.60470.044*
C160.8014 (9)0.3811 (6)0.5353 (6)0.043 (2)
H160.80350.42500.58660.052*
C170.9087 (9)0.3814 (6)0.4490 (6)0.041 (2)
H170.98380.42730.44150.049*
C180.9109 (8)0.3185 (6)0.3745 (5)0.0308 (17)
C190.5504 (9)0.1905 (6)0.4850 (5)0.039 (2)
H190.57080.14320.42820.047*
C200.5396 (10)0.1076 (7)0.5800 (6)0.060 (3)
H20A0.63940.05330.58190.090*
H20B0.45870.06490.58140.090*
H20C0.51390.15140.63760.090*
C210.3993 (9)0.2773 (7)0.4780 (6)0.057 (2)
H21A0.37380.32400.53380.086*
H21B0.31620.23660.47990.086*
H21C0.41030.32760.41560.086*
C221.0365 (8)0.3122 (7)0.2834 (6)0.042 (2)
H220.98680.31240.22470.051*
C231.1199 (9)0.4138 (7)0.2635 (6)0.057 (2)
H23A1.04340.48660.25810.086*
H23B1.19400.40700.20150.086*
H23C1.17520.41240.31820.086*
C241.1573 (9)0.1988 (7)0.2928 (6)0.053 (2)
H24A1.20330.19440.35230.079*
H24B1.23880.19610.23420.079*
H24C1.10710.13360.29780.079*
C250.5767 (11)0.4395 (7)0.2054 (8)0.060 (3)
H250.50440.39060.22320.072*
C260.6599 (13)0.4465 (9)0.1094 (8)0.078 (3)
H260.64730.40080.06230.093*
C270.7615 (12)0.5211 (9)0.0835 (8)0.079 (3)
H270.81760.52850.01810.095*
C280.7792 (12)0.5832 (8)0.1533 (9)0.071 (3)
H280.84970.63350.13650.085*
C290.6973 (12)0.5746 (8)0.2475 (8)0.071 (3)
H290.70990.61980.29500.085*
C300.5984 (10)0.5019 (7)0.2729 (7)0.056 (3)
H300.54390.49480.33880.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0217 (4)0.0279 (4)0.0209 (4)0.0004 (3)0.0016 (3)0.0040 (3)
I10.0378 (3)0.0405 (3)0.0365 (3)0.0119 (2)0.0001 (2)0.0124 (2)
N10.036 (4)0.024 (3)0.025 (3)0.003 (3)0.016 (3)0.003 (3)
N20.019 (3)0.035 (3)0.018 (3)0.002 (3)0.002 (2)0.008 (3)
N30.021 (3)0.033 (3)0.030 (4)0.005 (3)0.009 (3)0.003 (3)
C10.026 (4)0.025 (4)0.028 (4)0.006 (3)0.003 (3)0.004 (3)
C20.024 (4)0.049 (5)0.037 (5)0.003 (4)0.004 (4)0.008 (4)
C30.019 (4)0.041 (4)0.026 (4)0.000 (3)0.002 (3)0.003 (3)
C40.020 (4)0.040 (4)0.020 (4)0.007 (3)0.002 (3)0.003 (3)
C50.034 (4)0.035 (4)0.027 (4)0.013 (3)0.005 (3)0.006 (3)
C60.035 (4)0.029 (4)0.032 (5)0.003 (3)0.002 (4)0.005 (4)
C70.044 (5)0.036 (5)0.029 (4)0.006 (4)0.010 (4)0.003 (4)
C80.031 (4)0.035 (4)0.029 (4)0.000 (3)0.009 (3)0.011 (4)
C90.026 (4)0.029 (4)0.020 (4)0.002 (3)0.002 (3)0.001 (3)
C100.040 (5)0.045 (5)0.013 (4)0.006 (4)0.005 (3)0.000 (3)
C110.074 (7)0.061 (6)0.033 (5)0.004 (5)0.013 (5)0.001 (4)
C120.086 (8)0.103 (8)0.033 (5)0.019 (6)0.024 (5)0.015 (5)
C130.029 (4)0.023 (4)0.029 (4)0.002 (3)0.015 (3)0.005 (3)
C140.028 (4)0.029 (4)0.032 (4)0.003 (3)0.002 (3)0.011 (3)
C150.039 (5)0.037 (5)0.032 (5)0.003 (4)0.000 (4)0.009 (4)
C160.055 (5)0.027 (4)0.045 (5)0.002 (4)0.008 (4)0.015 (4)
C170.035 (5)0.034 (4)0.052 (6)0.003 (4)0.009 (4)0.005 (4)
C180.032 (4)0.032 (4)0.026 (4)0.002 (3)0.011 (3)0.002 (3)
C190.052 (5)0.047 (5)0.020 (4)0.015 (4)0.002 (4)0.012 (4)
C200.063 (6)0.070 (7)0.047 (6)0.026 (5)0.003 (5)0.004 (5)
C210.042 (5)0.075 (7)0.057 (6)0.013 (5)0.016 (5)0.003 (5)
C220.036 (5)0.062 (6)0.034 (5)0.017 (4)0.011 (4)0.003 (4)
C230.047 (5)0.065 (6)0.062 (6)0.024 (5)0.005 (5)0.001 (5)
C240.031 (5)0.070 (6)0.051 (6)0.004 (4)0.001 (4)0.020 (5)
C250.063 (6)0.041 (6)0.069 (7)0.004 (5)0.014 (6)0.002 (5)
C260.094 (9)0.064 (7)0.075 (8)0.001 (6)0.019 (7)0.025 (6)
C270.075 (8)0.077 (8)0.065 (8)0.003 (6)0.016 (6)0.000 (6)
C280.078 (8)0.053 (7)0.082 (8)0.023 (6)0.019 (7)0.018 (6)
C290.084 (8)0.050 (6)0.073 (8)0.000 (6)0.023 (6)0.002 (6)
C300.058 (6)0.032 (5)0.062 (7)0.005 (4)0.002 (5)0.002 (5)
Geometric parameters (Å, º) top
Pd1—C12.016 (6)C14—C191.513 (9)
Pd1—C1i2.016 (6)C15—C161.377 (9)
Pd1—I1i2.5971 (10)C15—H150.9500
Pd1—I12.5971 (10)C16—C171.382 (10)
N1—C91.390 (8)C16—H160.9500
N1—C131.421 (8)C17—C181.359 (9)
N1—H10.8800C17—H170.9500
N2—C11.359 (8)C18—C221.518 (9)
N2—C31.393 (8)C19—C211.517 (10)
N2—C41.421 (8)C19—C201.530 (10)
N3—C11.338 (8)C19—H191.0000
N3—C21.373 (8)C20—H20A0.9800
N3—C101.478 (8)C20—H20B0.9800
C2—C31.359 (9)C20—H20C0.9800
C2—H20.9500C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.395 (9)C21—H21C0.9800
C4—C91.414 (9)C22—C241.536 (10)
C5—C61.380 (9)C22—C231.542 (10)
C5—H50.9500C22—H221.0000
C6—C71.355 (9)C23—H23A0.9800
C6—H60.9500C23—H23B0.9800
C7—C81.382 (9)C23—H23C0.9800
C7—H70.9500C24—H24A0.9800
C8—C91.389 (9)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C10—C111.508 (10)C25—C301.348 (11)
C10—C121.531 (10)C25—C261.394 (12)
C10—H101.0000C25—H250.9500
C11—H11A0.9800C26—C271.389 (13)
C11—H11B0.9800C26—H260.9500
C11—H11C0.9800C27—C281.355 (13)
C12—H12A0.9800C27—H270.9500
C12—H12B0.9800C28—C291.371 (12)
C12—H12C0.9800C28—H280.9500
C13—C141.399 (9)C29—C301.353 (12)
C13—C181.425 (9)C29—H290.9500
C14—C151.375 (9)C30—H300.9500
C1—Pd1—C1i180.0 (5)C14—C15—C16122.7 (7)
C1—Pd1—I1i92.78 (18)C14—C15—H15118.7
C1i—Pd1—I1i87.22 (18)C16—C15—H15118.7
C1—Pd1—I187.22 (18)C15—C16—C17118.5 (7)
C1i—Pd1—I192.78 (18)C15—C16—H16120.7
I1i—Pd1—I1180.00 (2)C17—C16—H16120.7
C9—N1—C13123.0 (6)C18—C17—C16122.6 (7)
C9—N1—H1118.5C18—C17—H17118.7
C13—N1—H1118.5C16—C17—H17118.7
C1—N2—C3109.4 (5)C17—C18—C13117.5 (7)
C1—N2—C4126.2 (5)C17—C18—C22122.2 (7)
C3—N2—C4124.0 (5)C13—C18—C22120.2 (6)
C1—N3—C2111.1 (6)C14—C19—C21110.5 (6)
C1—N3—C10122.9 (6)C14—C19—C20112.6 (6)
C2—N3—C10125.9 (6)C21—C19—C20112.0 (7)
N3—C1—N2106.0 (6)C14—C19—H19107.1
N3—C1—Pd1126.8 (5)C21—C19—H19107.1
N2—C1—Pd1127.1 (5)C20—C19—H19107.1
C3—C2—N3106.8 (6)C19—C20—H20A109.5
C3—C2—H2126.6C19—C20—H20B109.5
N3—C2—H2126.6H20A—C20—H20B109.5
C2—C3—N2106.7 (6)C19—C20—H20C109.5
C2—C3—H3126.7H20A—C20—H20C109.5
N2—C3—H3126.7H20B—C20—H20C109.5
C5—C4—C9120.7 (6)C19—C21—H21A109.5
C5—C4—N2119.4 (6)C19—C21—H21B109.5
C9—C4—N2119.9 (6)H21A—C21—H21B109.5
C6—C5—C4119.9 (7)C19—C21—H21C109.5
C6—C5—H5120.0H21A—C21—H21C109.5
C4—C5—H5120.0H21B—C21—H21C109.5
C7—C6—C5120.2 (7)C18—C22—C24110.1 (6)
C7—C6—H6119.9C18—C22—C23113.9 (7)
C5—C6—H6119.9C24—C22—C23108.9 (6)
C6—C7—C8120.2 (7)C18—C22—H22107.9
C6—C7—H7119.9C24—C22—H22107.9
C8—C7—H7119.9C23—C22—H22107.9
C7—C8—C9122.3 (7)C22—C23—H23A109.5
C7—C8—H8118.9C22—C23—H23B109.5
C9—C8—H8118.9H23A—C23—H23B109.5
C8—C9—N1122.3 (6)C22—C23—H23C109.5
C8—C9—C4116.5 (6)H23A—C23—H23C109.5
N1—C9—C4121.3 (6)H23B—C23—H23C109.5
N3—C10—C11111.4 (6)C22—C24—H24A109.5
N3—C10—C12109.1 (6)C22—C24—H24B109.5
C11—C10—C12112.4 (7)H24A—C24—H24B109.5
N3—C10—H10107.9C22—C24—H24C109.5
C11—C10—H10107.9H24A—C24—H24C109.5
C12—C10—H10107.9H24B—C24—H24C109.5
C10—C11—H11A109.5C30—C25—C26120.2 (10)
C10—C11—H11B109.5C30—C25—H25119.9
H11A—C11—H11B109.5C26—C25—H25119.9
C10—C11—H11C109.5C27—C26—C25119.2 (10)
H11A—C11—H11C109.5C27—C26—H26120.4
H11B—C11—H11C109.5C25—C26—H26120.4
C10—C12—H12A109.5C28—C27—C26118.8 (10)
C10—C12—H12B109.5C28—C27—H27120.6
H12A—C12—H12B109.5C26—C27—H27120.6
C10—C12—H12C109.5C27—C28—C29121.2 (10)
H12A—C12—H12C109.5C27—C28—H28119.4
H12B—C12—H12C109.5C29—C28—H28119.4
C14—C13—N1119.1 (6)C30—C29—C28120.1 (10)
C14—C13—C18121.4 (6)C30—C29—H29120.0
N1—C13—C18119.5 (6)C28—C29—H29120.0
C15—C14—C13117.3 (6)C25—C30—C29120.4 (9)
C15—C14—C19119.5 (6)C25—C30—H30119.8
C13—C14—C19123.0 (6)C29—C30—H30119.8
C2—N3—C1—N20.5 (8)C1—N3—C10—C11107.3 (8)
C10—N3—C1—N2178.5 (6)C2—N3—C10—C1170.3 (9)
C2—N3—C1—Pd1177.1 (5)C1—N3—C10—C12128.0 (7)
C10—N3—C1—Pd10.9 (9)C2—N3—C10—C1254.3 (9)
C3—N2—C1—N30.4 (7)C9—N1—C13—C1473.6 (8)
C4—N2—C1—N3173.8 (6)C9—N1—C13—C18109.2 (7)
C3—N2—C1—Pd1177.2 (5)N1—C13—C14—C15177.7 (6)
C4—N2—C1—Pd18.6 (9)C18—C13—C14—C150.6 (10)
I1i—Pd1—C1—N381.1 (6)N1—C13—C14—C192.4 (10)
I1—Pd1—C1—N398.9 (6)C18—C13—C14—C19174.7 (7)
I1i—Pd1—C1—N2101.8 (5)C13—C14—C15—C161.1 (11)
I1—Pd1—C1—N278.2 (5)C19—C14—C15—C16174.3 (7)
C1—N3—C2—C30.5 (8)C14—C15—C16—C170.5 (12)
C10—N3—C2—C3178.4 (6)C15—C16—C17—C180.9 (12)
N3—C2—C3—N20.3 (8)C16—C17—C18—C131.4 (11)
C1—N2—C3—C20.0 (8)C16—C17—C18—C22175.2 (7)
C4—N2—C3—C2174.2 (6)C14—C13—C18—C170.6 (10)
C1—N2—C4—C557.2 (9)N1—C13—C18—C17176.4 (6)
C3—N2—C4—C5116.1 (7)C14—C13—C18—C22176.0 (7)
C1—N2—C4—C9122.4 (7)N1—C13—C18—C226.9 (10)
C3—N2—C4—C964.3 (8)C15—C14—C19—C2168.8 (9)
C9—C4—C5—C60.7 (10)C13—C14—C19—C21106.4 (8)
N2—C4—C5—C6179.7 (6)C15—C14—C19—C2057.4 (9)
C4—C5—C6—C73.4 (10)C13—C14—C19—C20127.4 (7)
C5—C6—C7—C84.1 (10)C17—C18—C22—C24100.7 (8)
C6—C7—C8—C90.7 (11)C13—C18—C22—C2475.9 (8)
C7—C8—C9—N1178.7 (6)C17—C18—C22—C2322.0 (10)
C7—C8—C9—C43.2 (10)C13—C18—C22—C23161.5 (7)
C13—N1—C9—C86.2 (10)C30—C25—C26—C272.0 (14)
C13—N1—C9—C4171.8 (6)C25—C26—C27—C281.4 (16)
C5—C4—C9—C83.9 (9)C26—C27—C28—C291.0 (16)
N2—C4—C9—C8176.5 (6)C27—C28—C29—C301.1 (15)
C5—C4—C9—N1178.0 (6)C26—C25—C30—C292.1 (14)
N2—C4—C9—N11.6 (9)C28—C29—C30—C251.6 (14)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[PdI2(C24H31N3)2]·2C6H6
Mr1239.45
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.998 (4), 12.000 (5), 13.839 (6)
α, β, γ (°)81.572 (8), 78.819 (9), 76.411 (8)
V3)1417.0 (10)
Z1
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.16 × 0.11 × 0.06
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.338, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
11207, 5500, 3317
Rint0.106
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.128, 0.88
No. of reflections5500
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 1.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The University of Leicester is thanked for a graduate studentship to CGD.

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCross, W. B., Daly, C. G., Ackerman, R. L., George, I. R. & Singh, K. (2011). Dalton Trans. 40, 495–505.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. N. (2009). Chem. Rev. pp 3612–3677.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds