organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium 6-carb­­oxy­pyridine-2-carboxyl­ate sesquihydrate

aDepartment of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran, bDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, and cDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: sharif44m@yahoo.com

(Received 30 October 2010; accepted 12 November 2010; online 20 November 2010)

In the title compound, C6H9N2+·C7H4NO4·1.5H2O, extensive O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, as well as ion pairing, ππ stacking inter­actions [centroid–centroid distances = 3.4690 (8) and 3.6932 (8) Å between aromatic rings] occur in the crystal. There are hydrogen-bonding inter­actions between water mol­ecules, which result in cyclic tetra­meric water clusters. One of the water O molecules has half occupancy. In the anion molecules, the –CO2 and –CO2H groups make torsion angles of 1.73 (18) and −12.14 (18)° with respect to the ring.

Related literature

For background to hydrogen bonding involving water, see: Long et al. (2004[Long, L. S., Wu, Y. R., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798-3800.]); Atwood et al., 2001[Atwood, J. L., Barbour, L. J., Ness, T. J., Raston, C. L. & Raston, P. L. (2001). J. Am. Chem. Soc. 123, 7192-719.]); Miyake & Aida (2003[Miyake, T. & Aida, M. (2003). Internet Electron. J. Mol. Des. 2, 24-32.]). For related structures, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4NO4·1.5H2O

  • Mr = 302.29

  • Monoclinic, P 21 /c

  • a = 9.2373 (6) Å

  • b = 7.1972 (5) Å

  • c = 21.6495 (14) Å

  • β = 93.951 (1)°

  • V = 1435.90 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.995

  • 15297 measured reflections

  • 3801 independent reflections

  • 3077 reflections with I > 2.0σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.102

  • S = 0.99

  • 3801 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.85 2.01 2.846 (2) 169
O1W—H1WB⋯O3 0.85 1.97 2.813 (2) 169
O2W—H2WB⋯O1Wii 0.85 2.11 2.944 (2) 167
O2W—H2WA⋯O1W 0.85 2.07 2.919 (2) 175
O1—H1O⋯O1Wiii 0.93 (3) 1.78 (3) 2.661 (2) 155 (2)
N2—H2N⋯O4 0.96 (2) 1.74 (2) 2.700 (2) 174 (2)
N3—H3NB⋯O3 0.98 (2) 1.86 (2) 2.829 (2) 172 (2)
N3—H3NA⋯O2iv 0.90 (2) 2.09 (2) 2.955 (2) 160 (2)
C2—H2A⋯O2v 0.95 2.47 3.158 (2) 129
C9—H9A⋯O1iv 0.95 2.56 3.399 (2) 147
C11—H11A⋯O2Wvi 0.95 2.55 3.405 (2) 149
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) x+1, y+1, z; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The presence of water is important in establishing H-bonded contributions to the total lattice energy, and is significant in establishing the stability of the hydrated crystal structures (Long et al., 2004). Several water clusters found in organic or metallo-organic crystal hosts have been structurally characterized (Atwood et al., 2001). A detailed understanding of the numerous possible structures and stability of isolated water clusters in diverse surroundings can help us understand the nature of water-water interactions in bulk water or ice. In this paper, we report the synthesis and crystal structure of the title proton transfer system, (I), derived from pyridine-2,6-dicarboxylic acid (pydcH2) and 2-amino-4-methylpyridine (2a4mp).

In the title compound, the asymmetric unit contains a cation, (2a4mpH)2+, an anion, (pydcH)- and 1.5 water molecules (Fig. 1). The bond distances and bond angles in the title compound are in agreement with the corresponding distances and angles reported in some related crystal structures (Aghabozorg et al., (2008); Tabatabaee et al., (2009). In the crystal structure, the cations and the anions are linked by hydrogen bonds (Tab. 1 and Fig. 2). In the structure, water molecules form cyclic tetrameric water clusters (Tab. 1 and Fig. 3) in the most stable pattern (Miyake & Aida, 2003). The clusters play a bridging role (Fig. 2), linking the adjacent cations and anions via hydrogen bonds and contributing to the formation of an extensive supramolecular structure.

Moreover, ππ stacking interactions with distances between ring centroids = 3.4690 (8) Å and 3.6931 (8)Å, (Fig. 4) together with C7O3···π involving aromatic ring of (pydcH)- (Fig. 5) seem to be effective in stabilizing the crystal structure.

Related literature top

For background to hydrogen bonding involving water, see: Long et al. (2004); Atwood et al., 2001); Miyake & Aida (2003). For related structures, see: Aghabozorg et al. (2008); Tabatabaee et al. (2009).

Experimental top

An aqueous solution of 2a4mp (324 mg, 3 mmol) in water (10 ml) was added to a stirring solution of pydcH2 (501 mg, 3 mmol) in water (10 ml). The reaction mixture was stirred at 298 K for 2h. Colorless crystals of the title compound were obtained by slow concentration of the solution at room temperature.

Refinement top

One of the water molecules (O2W) has 0.5 occupancy factor. The hydrogen atoms of OH, NH and NH2 groups and water molecules were found in difference Fourier synthesis. The H-atoms of OH, NH and NH2 groups were refined in isotropic approximation. The rest of the H-atoms were refined in riding model with C–H = 0.95 and 0.98 Å for aryl and methyl H-atoms and O–H = 0.85 Å for water molecules. The Uiso(H) parameters were 1.2 Ueq(Caryl/O) and 1.5 Ueq(Cmethyl).

Structure description top

The presence of water is important in establishing H-bonded contributions to the total lattice energy, and is significant in establishing the stability of the hydrated crystal structures (Long et al., 2004). Several water clusters found in organic or metallo-organic crystal hosts have been structurally characterized (Atwood et al., 2001). A detailed understanding of the numerous possible structures and stability of isolated water clusters in diverse surroundings can help us understand the nature of water-water interactions in bulk water or ice. In this paper, we report the synthesis and crystal structure of the title proton transfer system, (I), derived from pyridine-2,6-dicarboxylic acid (pydcH2) and 2-amino-4-methylpyridine (2a4mp).

In the title compound, the asymmetric unit contains a cation, (2a4mpH)2+, an anion, (pydcH)- and 1.5 water molecules (Fig. 1). The bond distances and bond angles in the title compound are in agreement with the corresponding distances and angles reported in some related crystal structures (Aghabozorg et al., (2008); Tabatabaee et al., (2009). In the crystal structure, the cations and the anions are linked by hydrogen bonds (Tab. 1 and Fig. 2). In the structure, water molecules form cyclic tetrameric water clusters (Tab. 1 and Fig. 3) in the most stable pattern (Miyake & Aida, 2003). The clusters play a bridging role (Fig. 2), linking the adjacent cations and anions via hydrogen bonds and contributing to the formation of an extensive supramolecular structure.

Moreover, ππ stacking interactions with distances between ring centroids = 3.4690 (8) Å and 3.6931 (8)Å, (Fig. 4) together with C7O3···π involving aromatic ring of (pydcH)- (Fig. 5) seem to be effective in stabilizing the crystal structure.

For background to hydrogen bonding involving water, see: Long et al. (2004); Atwood et al., 2001); Miyake & Aida (2003). For related structures, see: Aghabozorg et al. (2008); Tabatabaee et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998b); cell refinement: SAINT-Plus (Bruker, 1998a); data reduction: SAINT-Plus (Bruker, 1998a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) showing hydrogen bonds as dashed lines. Hydrogen atoms not involved in H-bonds have been excluded for clarity.
[Figure 3] Fig. 3. Tetrameric water cluster formed by H-bonds between water molecules in the title compound.
[Figure 4] Fig. 4. A view of the π-π stacking interaction between aromatic rings of the pyridine-2-carboxylate-6-carbonic acid and 2-amino-4-picolinium.
[Figure 5] Fig. 5. A view of the C-O···π interaction between C7O3 group and the centroid of the N1/C1-C5 aromatic ring of the anion, (pydcH)-.
2-Amino-4-methylpyridinium 6-carboxypyridine-2-carboxylate sesquihydrate top
Crystal data top
C6H9N2+·C7H4NO4·1.5H2OF(000) = 636
Mr = 302.29Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1125 reflections
a = 9.2373 (6) Åθ = 2–25°
b = 7.1972 (5) ŵ = 0.11 mm1
c = 21.6495 (14) ÅT = 120 K
β = 93.951 (1)°Rhombic, colorless
V = 1435.90 (17) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3801 independent reflections
Radiation source: fine-focus sealed tube3077 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.980, Tmax = 0.995k = 99
15297 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0244P)2 + 1.3516P]
where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C6H9N2+·C7H4NO4·1.5H2OV = 1435.90 (17) Å3
Mr = 302.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2373 (6) ŵ = 0.11 mm1
b = 7.1972 (5) ÅT = 120 K
c = 21.6495 (14) Å0.20 × 0.20 × 0.10 mm
β = 93.951 (1)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3077 reflections with I > 2.0σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.026
15297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.36 e Å3
3801 reflectionsΔρmin = 0.25 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.26470 (12)0.06479 (14)0.64545 (5)0.0309 (2)
H1O0.356 (3)0.019 (3)0.6373 (11)0.066 (7)*
O20.06351 (11)0.00989 (15)0.68870 (5)0.0325 (2)
O30.64297 (10)0.62489 (14)0.66239 (5)0.0288 (2)
O40.65846 (10)0.32081 (14)0.64256 (5)0.0264 (2)
O1W0.53707 (11)0.96510 (15)0.61389 (5)0.0305 (2)
H1WA0.57131.06800.62750.037*
H1WB0.57560.87070.63200.037*
O2W0.6530 (2)1.0929 (3)0.49926 (10)0.0310 (5)0.50
H2WB0.58921.06660.47040.037*0.50
H2WA0.61421.05520.53150.037*0.50
N10.38249 (11)0.26733 (15)0.67222 (5)0.0192 (2)
N20.91543 (12)0.37469 (16)0.59293 (5)0.0223 (2)
H2N0.822 (2)0.364 (3)0.6099 (9)0.043 (5)*
N30.93113 (13)0.67564 (18)0.62910 (6)0.0270 (3)
H3NB0.835 (2)0.658 (3)0.6447 (8)0.037 (5)*
H3NA0.986 (2)0.776 (3)0.6395 (9)0.044 (5)*
C10.25047 (13)0.23786 (18)0.69207 (6)0.0199 (2)
C20.17514 (14)0.3666 (2)0.72513 (6)0.0232 (3)
H2A0.08180.33880.73860.028*
C30.23996 (14)0.5369 (2)0.73793 (6)0.0247 (3)
H3A0.19220.62860.76070.030*
C40.37662 (14)0.57143 (19)0.71688 (6)0.0223 (3)
H4A0.42320.68760.72470.027*
C50.44366 (13)0.43305 (18)0.68430 (6)0.0188 (2)
C60.18551 (15)0.05222 (19)0.67584 (7)0.0246 (3)
C70.59368 (14)0.46266 (18)0.66116 (6)0.0210 (3)
C80.99015 (14)0.53539 (19)0.59952 (6)0.0213 (3)
C91.12726 (14)0.5468 (2)0.57398 (6)0.0225 (3)
H9A1.18150.65890.57760.027*
C101.18187 (14)0.3971 (2)0.54415 (6)0.0236 (3)
C111.09980 (15)0.2309 (2)0.53908 (7)0.0262 (3)
H11A1.13610.12520.51890.031*
C120.96820 (15)0.2250 (2)0.56356 (7)0.0260 (3)
H12A0.91220.11430.56010.031*
C131.32713 (15)0.4067 (2)0.51713 (7)0.0304 (3)
H13A1.36070.53590.51720.046*
H13B1.31840.36000.47450.046*
H13C1.39710.33050.54200.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (5)0.0214 (5)0.0463 (6)0.0024 (4)0.0069 (4)0.0036 (4)
O20.0241 (5)0.0321 (6)0.0420 (6)0.0091 (4)0.0083 (4)0.0018 (5)
O30.0212 (5)0.0213 (5)0.0446 (6)0.0042 (4)0.0074 (4)0.0023 (4)
O40.0197 (4)0.0216 (5)0.0390 (6)0.0005 (4)0.0097 (4)0.0001 (4)
O1W0.0315 (5)0.0227 (5)0.0377 (6)0.0012 (4)0.0043 (4)0.0029 (4)
O2W0.0253 (10)0.0408 (12)0.0271 (10)0.0025 (9)0.0032 (8)0.0036 (9)
N10.0168 (5)0.0204 (5)0.0208 (5)0.0003 (4)0.0027 (4)0.0018 (4)
N20.0180 (5)0.0242 (6)0.0251 (5)0.0012 (4)0.0040 (4)0.0003 (4)
N30.0209 (6)0.0264 (6)0.0345 (7)0.0019 (5)0.0076 (5)0.0054 (5)
C10.0181 (6)0.0217 (6)0.0201 (6)0.0010 (5)0.0022 (4)0.0027 (5)
C20.0188 (6)0.0295 (7)0.0219 (6)0.0004 (5)0.0046 (5)0.0015 (5)
C30.0220 (6)0.0287 (7)0.0236 (6)0.0040 (5)0.0039 (5)0.0045 (5)
C40.0202 (6)0.0216 (6)0.0249 (6)0.0000 (5)0.0011 (5)0.0032 (5)
C50.0163 (5)0.0207 (6)0.0196 (6)0.0008 (5)0.0026 (4)0.0010 (5)
C60.0235 (6)0.0224 (6)0.0280 (7)0.0027 (5)0.0030 (5)0.0041 (5)
C70.0177 (6)0.0212 (6)0.0242 (6)0.0007 (5)0.0022 (5)0.0015 (5)
C80.0182 (6)0.0239 (6)0.0219 (6)0.0003 (5)0.0019 (5)0.0011 (5)
C90.0175 (6)0.0263 (7)0.0239 (6)0.0020 (5)0.0025 (5)0.0022 (5)
C100.0169 (6)0.0325 (7)0.0217 (6)0.0024 (5)0.0032 (5)0.0034 (5)
C110.0248 (6)0.0275 (7)0.0266 (7)0.0038 (5)0.0038 (5)0.0028 (5)
C120.0248 (6)0.0244 (7)0.0288 (7)0.0012 (5)0.0019 (5)0.0018 (5)
C130.0207 (6)0.0409 (8)0.0304 (7)0.0028 (6)0.0082 (5)0.0023 (6)
Geometric parameters (Å, º) top
O1—C61.3204 (17)C2—C31.384 (2)
O1—H1O0.93 (2)C2—H2A0.9500
O2—C61.2179 (17)C3—C41.3937 (18)
O3—C71.2528 (16)C3—H3A0.9500
O4—C71.2632 (16)C4—C51.3904 (18)
O1W—H1WA0.8500C4—H4A0.9500
O1W—H1WB0.8500C5—C71.5206 (17)
O2W—H2WB0.8500C8—C91.4188 (17)
O2W—H2WA0.8501C9—C101.3701 (19)
N1—C11.3375 (16)C9—H9A0.9500
N1—C51.3379 (17)C10—C111.416 (2)
N2—C81.3494 (17)C10—C131.5019 (18)
N2—C121.3583 (18)C11—C121.3598 (19)
N2—H2N0.96 (2)C11—H11A0.9500
N3—C81.3320 (18)C12—H12A0.9500
N3—H3NB0.978 (19)C13—H13A0.9800
N3—H3NA0.90 (2)C13—H13B0.9800
C1—C21.3872 (18)C13—H13C0.9800
C1—C61.4966 (19)
C6—O1—H1O114.2 (15)O2—C6—C1122.14 (13)
H1WA—O1W—H1WB113.8O1—C6—C1117.35 (12)
H2WB—O2W—H2WA102.8O3—C7—O4125.49 (12)
C1—N1—C5117.44 (11)O3—C7—C5117.50 (12)
C8—N2—C12122.13 (12)O4—C7—C5117.01 (11)
C8—N2—H2N119.4 (12)N3—C8—N2118.49 (12)
C12—N2—H2N118.5 (12)N3—C8—C9123.32 (13)
C8—N3—H3NB118.6 (11)N2—C8—C9118.18 (12)
C8—N3—H3NA119.0 (13)C10—C9—C8120.37 (13)
H3NB—N3—H3NA121.7 (17)C10—C9—H9A119.8
N1—C1—C2124.10 (12)C8—C9—H9A119.8
N1—C1—C6115.21 (12)C9—C10—C11119.22 (12)
C2—C1—C6120.69 (12)C9—C10—C13121.01 (13)
C3—C2—C1118.01 (12)C11—C10—C13119.77 (13)
C3—C2—H2A121.0C12—C11—C10118.97 (13)
C1—C2—H2A121.0C12—C11—H11A120.5
C2—C3—C4118.79 (12)C10—C11—H11A120.5
C2—C3—H3A120.6N2—C12—C11121.12 (13)
C4—C3—H3A120.6N2—C12—H12A119.4
C5—C4—C3118.91 (13)C11—C12—H12A119.4
C5—C4—H4A120.5C10—C13—H13A109.5
C3—C4—H4A120.5C10—C13—H13B109.5
N1—C5—C4122.74 (11)H13A—C13—H13B109.5
N1—C5—C7116.28 (11)C10—C13—H13C109.5
C4—C5—C7120.97 (12)H13A—C13—H13C109.5
O2—C6—O1120.49 (13)H13B—C13—H13C109.5
C5—N1—C1—C21.24 (19)N1—C5—C7—O3168.20 (12)
C5—N1—C1—C6178.42 (11)C4—C5—C7—O312.68 (19)
N1—C1—C2—C30.6 (2)N1—C5—C7—O412.13 (17)
C6—C1—C2—C3179.05 (12)C4—C5—C7—O4166.98 (12)
C1—C2—C3—C40.4 (2)C12—N2—C8—N3179.79 (13)
C2—C3—C4—C50.6 (2)C12—N2—C8—C90.82 (19)
C1—N1—C5—C40.94 (18)N3—C8—C9—C10179.92 (13)
C1—N1—C5—C7179.97 (11)N2—C8—C9—C100.72 (19)
C3—C4—C5—N10.0 (2)C8—C9—C10—C110.0 (2)
C3—C4—C5—C7179.08 (12)C8—C9—C10—C13179.71 (13)
N1—C1—C6—O2176.83 (13)C9—C10—C11—C120.5 (2)
C2—C1—C6—O22.8 (2)C13—C10—C11—C12179.69 (13)
N1—C1—C6—O11.73 (18)C8—N2—C12—C110.2 (2)
C2—C1—C6—O1178.60 (12)C10—C11—C12—N20.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.852.012.846 (2)169
O1W—H1WA···N1i0.852.502.935 (2)112
O1W—H1WB···O30.851.972.813 (2)169
O2W—H2WB···O1Wii0.852.112.944 (2)167
O2W—H2WA···O1W0.852.072.919 (2)175
O1—H1O···O1Wiii0.93 (3)1.78 (3)2.661 (2)155 (2)
O1—H1O···N10.93 (3)2.20 (2)2.673 (2)110 (2)
N2—H2N···O40.96 (2)1.74 (2)2.700 (2)174 (2)
N3—H3NB···O30.98 (2)1.86 (2)2.829 (2)172 (2)
N3—H3NA···O2iv0.90 (2)2.09 (2)2.955 (2)160 (2)
C2—H2A···O2v0.952.473.158 (2)129
C9—H9A···O1iv0.952.563.399 (2)147
C11—H11A···O2Wvi0.952.553.405 (2)149
Cg(1)N2/C8–C12···Cg(1)vi3.4690 (8)
Cg(1)···Cg(2)N1/C1–C5vii3.6932 (8)
C7—O3···Cg(2)viii3.50 (1)125 (1)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x, y+1/2, z+3/2; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4NO4·1.5H2O
Mr302.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.2373 (6), 7.1972 (5), 21.6495 (14)
β (°) 93.951 (1)
V3)1435.90 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
15297, 3801, 3077
Rint0.026
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.102, 0.99
No. of reflections3801
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: SMART (Bruker, 1998b), SAINT-Plus (Bruker, 1998a), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.852.012.846 (2)169
O1W—H1WA···N1i0.852.502.935 (2)112
O1W—H1WB···O30.851.972.813 (2)169
O2W—H2WB···O1Wii0.852.112.944 (2)167
O2W—H2WA···O1W0.852.072.919 (2)175
O1—H1O···O1Wiii0.93 (3)1.78 (3)2.661 (2)155 (2)
O1—H1O···N10.93 (3)2.20 (2)2.673 (2)110 (2)
N2—H2N···O40.96 (2)1.74 (2)2.700 (2)174 (2)
N3—H3NB···O30.98 (2)1.86 (2)2.829 (2)172 (2)
N3—H3NA···O2iv0.90 (2)2.09 (2)2.955 (2)160 (2)
C2—H2A···O2v0.952.473.158 (2)129
C9—H9A···O1iv0.952.563.399 (2)147
C11—H11A···O2Wvi0.952.553.405 (2)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x, y+1/2, z+3/2; (vi) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Islamic Azad University, Yazd Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAtwood, J. L., Barbour, L. J., Ness, T. J., Raston, C. L. & Raston, P. L. (2001). J. Am. Chem. Soc. 123, 7192–719.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationLong, L. S., Wu, Y. R., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiyake, T. & Aida, M. (2003). Internet Electron. J. Mol. Des. 2, 24–32.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds