metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa-μ-acetato-bis­­(di­methyl sulfoxide)­trimanganese(II)]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bChina Clean Coal Technology, China Coal Research Institute, Beijing 100013, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 22 September 2010; accepted 20 October 2010; online 30 October 2010)

In the title complex, [Mn3(CH3CO2)6(C2H6SO)2]n, the MnII ions exhibit similar MnO6 octa­hedral coordination geometries but with different coordination environments. One type of MnII ion is surrounded by five acetate groups and a terminal dimethyl sulfoxide group, while the other lies on a twofold axis and is coordinated by six O atoms from three symmetry-related acetate ions. The acetate anions exhibit three independent bridging modes, which flexibly bridge the MnII ions along the c-axis direction, forming an infinite chain structure; the chains are further inter­connected through weak C—H⋯O and C—H⋯S hydrogen-bonding inter­actions.

Related literature

For metal complexes of DMSO, see: Calligaris et al. (2004[Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.]). For the structure of a related complex, see: Wang et al. (2000[Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2000). Acta Cryst. C56, 418-420.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C2H3O2)6(C2H6OS)2]

  • Mr = 675.34

  • Monoclinic, C 2

  • a = 12.8475 (16) Å

  • b = 12.5439 (16) Å

  • c = 8.6095 (11) Å

  • β = 94.906 (2)°

  • V = 1382.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.41 × 0.36 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 1.000

  • 3821 measured reflections

  • 1953 independent reflections

  • 1919 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.05

  • 1953 reflections

  • 161 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 653 Friedel pairs

  • Flack parameter: 0.034 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O6i 0.96 2.45 3.367 (4) 160
C2—H2B⋯S1ii 0.96 2.99 3.841 (4) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordination chemistry of dimethyl sulfoxid (DMSO) has been widely studied. Herein, we report the preparation and crystal strcuture of a new manganese(II) complex with dimethyl sulfoxide (DMSO). In the title complex, the two independent MnII ions (Mn1 and Mn2) exhibit a similar O6-octahedral coordination geometry with different coordination environments (Fig. 1). The Mn1 ion is surrounded by five acetates and one η1-bonding DMSO, while the Mn2 lies on a two-fold axis and is coordinated by six oxygen atoms of three symmetry related acetate ions. The acetate anions exhibit three independent bridging modes, syn, syn η1:η12-mode (C2-symmetric O3-containing acetate and O5-, O6-containing acetate), the syn, syn, ant η1:η23-mode (O1-, O2-containing acetate) and the syn, ant, syn, ant η2:η23-mode (C2-symmetric O7-containing acetate). The Mn1 and Mn2 ions are flexibly bridged by these anions and assemble into an infinite chain along the c direction (Fig. 2). The parallel arrays interconnect through C—H···O and C—H···S type H-bonding interactions (Table 1). In the termianl dimethyl sulfoxide, the S1O4 of 1.501 (2)Å bond is slightly longer than that of the neat DMSO, which can be ascribed to the reduced bond order as that found in the protonated and η1-coordinated alkyl sulfoxides (Calligaris et al., 2004). The Mn1—O4 bond length of 2.153 (2)Å is comparable to 2.158 (2)Å found in catena-(tetrakis(µ2-thiocyanato-N,S)-bis(dimethyl sulfoxide-O)- manganese(II)-mercury(II) (Wang et al., 2000), in which the dimethyl sulfoxide shows a similar terminal η1-coordinated bonding to the MnII.

Related literature top

For metal complexes of DMSO, see: Calligaris et al. (2004). For the structure of a related complex, see: Wang et al. (2000). Scheme - Mn atoms should not be lablelled Mn2, Mn2

Experimental top

Mn(CH3CO2)2.4H2O (25 mg, 0.1 mmol) was dissolved in 3 ml deionized water with stirring at room temperature. After half an hour, 1 ml dimethyl sulfoxide was added to the solution. The mixed solution was stirred for another half hour, and then filtered. The clear solution obtained was left to stand in the air to let the solvent to evaporate. The colorless crystals were deposited after one week (12.60 mg, yield 56%).

Refinement top

An absolute structure was determined using the Flack (1983) method. The hydrogen atoms were placed in idealized positions and allowed to ride on the parent carbon atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Structure description top

The coordination chemistry of dimethyl sulfoxid (DMSO) has been widely studied. Herein, we report the preparation and crystal strcuture of a new manganese(II) complex with dimethyl sulfoxide (DMSO). In the title complex, the two independent MnII ions (Mn1 and Mn2) exhibit a similar O6-octahedral coordination geometry with different coordination environments (Fig. 1). The Mn1 ion is surrounded by five acetates and one η1-bonding DMSO, while the Mn2 lies on a two-fold axis and is coordinated by six oxygen atoms of three symmetry related acetate ions. The acetate anions exhibit three independent bridging modes, syn, syn η1:η12-mode (C2-symmetric O3-containing acetate and O5-, O6-containing acetate), the syn, syn, ant η1:η23-mode (O1-, O2-containing acetate) and the syn, ant, syn, ant η2:η23-mode (C2-symmetric O7-containing acetate). The Mn1 and Mn2 ions are flexibly bridged by these anions and assemble into an infinite chain along the c direction (Fig. 2). The parallel arrays interconnect through C—H···O and C—H···S type H-bonding interactions (Table 1). In the termianl dimethyl sulfoxide, the S1O4 of 1.501 (2)Å bond is slightly longer than that of the neat DMSO, which can be ascribed to the reduced bond order as that found in the protonated and η1-coordinated alkyl sulfoxides (Calligaris et al., 2004). The Mn1—O4 bond length of 2.153 (2)Å is comparable to 2.158 (2)Å found in catena-(tetrakis(µ2-thiocyanato-N,S)-bis(dimethyl sulfoxide-O)- manganese(II)-mercury(II) (Wang et al., 2000), in which the dimethyl sulfoxide shows a similar terminal η1-coordinated bonding to the MnII.

For metal complexes of DMSO, see: Calligaris et al. (2004). For the structure of a related complex, see: Wang et al. (2000). Scheme - Mn atoms should not be lablelled Mn2, Mn2

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title complex with the atom-numbering scheme; hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: i x, y, z-1; ii -x+2,y,-z; iii -x + 2, y, -z +1.
[Figure 2] Fig. 2. Infinite chain of the MnII ions bridged by acetate anions along the c direction in a unit cell. Symmetry code: i -x + 2, y, -z.
Poly[hexa-µ-acetato-bis(dimethyl sulfoxide)trimanganese(II)] top
Crystal data top
[Mn3(C2H3O2)6(C2H6OS)2]Z = 2
Mr = 675.34F(000) = 690
Monoclinic, C2Dx = 1.622 Mg m3
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 12.8475 (16) Åθ = 2.4–25.1°
b = 12.5439 (16) ŵ = 1.56 mm1
c = 8.6095 (11) ÅT = 293 K
β = 94.906 (2)°Block, colorless
V = 1382.4 (3) Å30.41 × 0.36 × 0.29 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1953 independent reflections
Radiation source: fine-focus sealed tube1919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.883, Tmax = 1.000k = 1214
3821 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.033P)2 + 0.3155P] P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1953 reflectionsΔρmax = 0.39 e Å3
161 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 653 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.034 (17)
Crystal data top
[Mn3(C2H3O2)6(C2H6OS)2]V = 1382.4 (3) Å3
Mr = 675.34Z = 2
Monoclinic, C2Mo Kα radiation
a = 12.8475 (16) ŵ = 1.56 mm1
b = 12.5439 (16) ÅT = 293 K
c = 8.6095 (11) Å0.41 × 0.36 × 0.29 mm
β = 94.906 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1919 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 1.000Rint = 0.020
3821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.39 e Å3
S = 1.05Δρmin = 0.16 e Å3
1953 reflectionsAbsolute structure: Flack (1983), 653 Friedel pairs
161 parametersAbsolute structure parameter: 0.034 (17)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An absolute structure was established with the Flack parameter of 0.034 (17).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.91731 (2)0.56819 (3)0.13931 (4)0.02995 (11)
Mn21.00000.43103 (4)0.50000.03045 (14)
S10.70961 (5)0.67013 (7)0.27681 (10)0.0504 (2)
O10.91650 (12)0.53278 (16)0.88461 (19)0.0352 (4)
O20.87911 (14)0.44946 (19)0.6590 (2)0.0447 (5)
O30.94917 (16)0.73193 (16)0.0982 (2)0.0446 (5)
O40.75455 (15)0.6046 (2)0.1528 (2)0.0526 (6)
O50.87347 (19)0.4057 (2)0.1696 (3)0.0641 (6)
O60.89783 (16)0.3166 (2)0.3901 (2)0.0517 (5)
O71.05675 (14)0.59438 (15)0.60213 (19)0.0379 (4)
C10.85462 (19)0.4827 (2)0.7865 (3)0.0318 (5)
C20.7442 (2)0.4630 (3)0.8279 (4)0.0454 (7)
H2A0.73550.49280.92870.068*
H2B0.73120.38770.82990.068*
H2C0.69580.49610.75150.068*
C31.00000.7770 (3)0.00000.0376 (8)
C41.00000.8965 (4)0.00000.0634 (14)
H4A1.04250.92200.07860.095*0.50
H4B1.02770.92200.10030.095*0.50
H4C0.92980.92200.02170.095*0.50
C50.7587 (3)0.2664 (4)0.2103 (5)0.0792 (13)
H5A0.72910.28980.10990.119*
H5B0.70690.27120.28410.119*
H5C0.78140.19370.20330.119*
C60.8501 (2)0.3355 (2)0.2627 (3)0.0386 (6)
C70.6698 (3)0.5766 (5)0.4144 (5)0.0873 (14)
H7A0.73030.54830.47360.131*
H7B0.63200.51970.36070.131*
H7C0.62570.61130.48340.131*
C80.5846 (3)0.7060 (4)0.1907 (5)0.0799 (13)
H8A0.59180.75980.11300.120*
H8B0.54320.73330.26940.120*
H8C0.55110.64440.14290.120*
C91.00000.7628 (4)0.50000.0727 (16)
H9A0.95310.78830.41540.109*0.50
H9B1.06930.78830.48780.109*0.50
H9C0.97760.78830.59690.109*0.50
C101.00000.6450 (4)0.50000.0383 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02796 (17)0.0394 (2)0.02291 (18)0.00325 (16)0.00453 (12)0.00263 (16)
Mn20.0318 (3)0.0360 (3)0.0238 (3)0.0000.00371 (19)0.000
S10.0378 (4)0.0585 (5)0.0547 (5)0.0060 (3)0.0025 (3)0.0202 (4)
O10.0278 (8)0.0502 (11)0.0278 (9)0.0062 (8)0.0037 (7)0.0038 (8)
O20.0401 (9)0.0648 (14)0.0305 (9)0.0086 (9)0.0107 (8)0.0127 (9)
O30.0549 (11)0.0398 (11)0.0407 (11)0.0029 (9)0.0141 (9)0.0029 (8)
O40.0341 (10)0.0810 (17)0.0428 (11)0.0108 (9)0.0043 (8)0.0150 (11)
O50.0691 (15)0.0525 (15)0.0704 (16)0.0129 (12)0.0037 (12)0.0102 (12)
O60.0554 (11)0.0611 (14)0.0382 (11)0.0123 (10)0.0010 (9)0.0110 (10)
O70.0454 (9)0.0452 (12)0.0229 (8)0.0039 (8)0.0019 (7)0.0009 (8)
C10.0285 (12)0.0419 (14)0.0248 (12)0.0027 (10)0.0020 (10)0.0013 (11)
C20.0345 (13)0.065 (2)0.0369 (15)0.0113 (13)0.0062 (11)0.0079 (13)
C30.0337 (17)0.039 (2)0.040 (2)0.0000.0017 (15)0.000
C40.061 (3)0.041 (2)0.092 (4)0.0000.031 (3)0.000
C50.078 (2)0.087 (3)0.068 (2)0.039 (2)0.020 (2)0.009 (2)
C60.0384 (13)0.0347 (14)0.0433 (15)0.0019 (11)0.0079 (11)0.0041 (12)
C70.076 (2)0.134 (4)0.054 (2)0.005 (3)0.0194 (18)0.000 (3)
C80.0454 (17)0.081 (3)0.110 (3)0.0282 (19)0.0133 (19)0.029 (3)
C90.120 (5)0.046 (3)0.051 (3)0.0000.000 (3)0.000
C100.047 (2)0.043 (2)0.0272 (19)0.0000.0116 (17)0.000
Geometric parameters (Å, º) top
Mn1—O32.130 (2)C1—C21.513 (4)
Mn1—O52.136 (2)C2—H2A0.9600
Mn1—O42.1533 (19)C2—H2B0.9600
Mn1—O1i2.2076 (15)C2—H2C0.9600
Mn1—O1ii2.2365 (17)C3—O3iv1.247 (3)
Mn1—O7i2.2467 (17)C3—C41.498 (6)
Mn2—O62.113 (2)C4—H4A0.9600
Mn2—O6i2.113 (2)C4—H4B0.9600
Mn2—O22.1690 (18)C4—H4C0.9600
Mn2—O2i2.1690 (18)C5—C61.499 (5)
Mn2—O72.3224 (19)C5—H5A0.9600
Mn2—O7i2.3224 (19)C5—H5B0.9600
S1—O41.501 (2)C5—H5C0.9600
S1—C81.768 (3)C7—H7A0.9600
S1—C71.773 (5)C7—H7B0.9600
O1—C11.275 (3)C7—H7C0.9600
O1—Mn1i2.2076 (15)C8—H8A0.9600
O1—Mn1iii2.2365 (17)C8—H8B0.9600
O2—C11.239 (3)C8—H8C0.9600
O3—C31.247 (3)C9—C101.477 (7)
O5—C61.245 (4)C9—H9A0.9600
O6—C61.233 (4)C9—H9B0.9600
O7—C101.264 (3)C9—H9C0.9600
O7—Mn1i2.2467 (17)C10—O7i1.264 (3)
O3—Mn1—O5175.34 (9)O1—C1—C2117.9 (2)
O3—Mn1—O490.32 (9)C1—C2—H2A109.5
O5—Mn1—O485.91 (10)C1—C2—H2B109.5
O3—Mn1—O1i88.70 (8)H2A—C2—H2B109.5
O5—Mn1—O1i94.97 (9)C1—C2—H2C109.5
O4—Mn1—O1i177.66 (7)H2A—C2—H2C109.5
O3—Mn1—O1ii90.78 (7)H2B—C2—H2C109.5
O5—Mn1—O1ii87.19 (9)O3iv—C3—O3126.1 (4)
O4—Mn1—O1ii99.89 (7)O3iv—C3—C4116.97 (19)
O1i—Mn1—O1ii78.00 (7)O3—C3—C4116.97 (19)
O3—Mn1—O7i90.53 (7)C3—C4—H4A109.5
O5—Mn1—O7i92.12 (9)C3—C4—H4B109.5
O4—Mn1—O7i88.74 (7)H4A—C4—H4B109.5
O1i—Mn1—O7i93.39 (6)C3—C4—H4C109.5
O1ii—Mn1—O7i171.26 (6)H4A—C4—H4C109.5
O6—Mn2—O6i94.44 (13)H4B—C4—H4C109.5
O6—Mn2—O284.50 (8)C6—C5—H5A109.5
O6i—Mn2—O2103.92 (8)C6—C5—H5B109.5
O6—Mn2—O2i103.92 (8)H5A—C5—H5B109.5
O6i—Mn2—O2i84.50 (8)C6—C5—H5C109.5
O2—Mn2—O2i167.76 (13)H5A—C5—H5C109.5
O6—Mn2—O7158.69 (8)H5B—C5—H5C109.5
O6i—Mn2—O7105.48 (8)O6—C6—O5125.5 (3)
O2—Mn2—O783.42 (7)O6—C6—C5118.3 (3)
O2i—Mn2—O785.78 (8)O5—C6—C5116.2 (3)
O6—Mn2—O7i105.48 (8)S1—C7—H7A109.5
O6i—Mn2—O7i158.69 (8)S1—C7—H7B109.5
O2—Mn2—O7i85.78 (8)H7A—C7—H7B109.5
O2i—Mn2—O7i83.42 (7)S1—C7—H7C109.5
O7—Mn2—O7i56.16 (9)H7A—C7—H7C109.5
O4—S1—C8103.40 (16)H7B—C7—H7C109.5
O4—S1—C7105.3 (2)S1—C8—H8A109.5
C8—S1—C798.3 (2)S1—C8—H8B109.5
C1—O1—Mn1i126.19 (15)H8A—C8—H8B109.5
C1—O1—Mn1iii134.27 (15)S1—C8—H8C109.5
Mn1i—O1—Mn1iii97.36 (6)H8A—C8—H8C109.5
C1—O2—Mn2147.63 (17)H8B—C8—H8C109.5
C3—O3—Mn1132.0 (2)C10—C9—H9A109.5
S1—O4—Mn1126.07 (12)C10—C9—H9B109.5
C6—O5—Mn1146.5 (2)H9A—C9—H9B109.5
C6—O6—Mn2120.7 (2)C10—C9—H9C109.5
C10—O7—Mn1i142.22 (15)H9A—C9—H9C109.5
C10—O7—Mn292.1 (2)H9B—C9—H9C109.5
Mn1i—O7—Mn2105.15 (7)O7i—C10—O7119.7 (4)
O2—C1—O1124.1 (2)O7i—C10—C9120.16 (19)
O2—C1—C2117.9 (2)O7—C10—C9120.16 (19)
O6—Mn2—O2—C1163.4 (4)O6—Mn2—O7—C1033.4 (2)
O6i—Mn2—O2—C170.2 (4)O6i—Mn2—O7—C10168.01 (9)
O2i—Mn2—O2—C162.4 (4)O2—Mn2—O7—C1089.32 (10)
O7—Mn2—O2—C134.2 (4)O2i—Mn2—O7—C1084.91 (9)
O7i—Mn2—O2—C190.5 (4)O7i—Mn2—O7—C100.0
O5—Mn1—O3—C396.9 (11)O6—Mn2—O7—Mn1i112.59 (19)
O4—Mn1—O3—C3132.66 (18)O6i—Mn2—O7—Mn1i45.97 (9)
O1i—Mn1—O3—C345.22 (18)O2—Mn2—O7—Mn1i56.70 (8)
O1ii—Mn1—O3—C332.76 (18)O2i—Mn2—O7—Mn1i129.08 (8)
O7i—Mn1—O3—C3138.60 (19)O7i—Mn2—O7—Mn1i146.02 (13)
C8—S1—O4—Mn1161.6 (2)Mn2—O2—C1—O12.3 (6)
C7—S1—O4—Mn195.7 (2)Mn2—O2—C1—C2177.9 (3)
O3—Mn1—O4—S166.55 (18)Mn1i—O1—C1—O22.6 (4)
O5—Mn1—O4—S1116.18 (19)Mn1iii—O1—C1—O2161.7 (2)
O1i—Mn1—O4—S1132 (2)Mn1i—O1—C1—C2177.7 (2)
O1ii—Mn1—O4—S1157.39 (17)Mn1iii—O1—C1—C218.5 (4)
O7i—Mn1—O4—S123.97 (18)Mn1—O3—C3—O3iv3.74 (11)
O3—Mn1—O5—C6114.0 (11)Mn1—O3—C3—C4176.26 (11)
O4—Mn1—O5—C678.1 (4)Mn2—O6—C6—O518.9 (4)
O1i—Mn1—O5—C6104.1 (4)Mn2—O6—C6—C5163.8 (3)
O1ii—Mn1—O5—C6178.2 (4)Mn1—O5—C6—O646.7 (6)
O7i—Mn1—O5—C610.5 (4)Mn1—O5—C6—C5135.9 (4)
O6i—Mn2—O6—C6148.6 (2)Mn1i—O7—C10—O7i118.3 (3)
O2—Mn2—O6—C6107.8 (2)Mn2—O7—C10—O7i0.0
O2i—Mn2—O6—C663.2 (2)Mn1i—O7—C10—C961.7 (3)
O7—Mn2—O6—C652.1 (3)Mn2—O7—C10—C9180.0
O7i—Mn2—O6—C623.7 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O6v0.962.453.367 (4)160
C2—H2B···S1vi0.962.993.841 (4)147
Symmetry codes: (v) x1/2, y+1/2, z; (vi) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn3(C2H3O2)6(C2H6OS)2]
Mr675.34
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)12.8475 (16), 12.5439 (16), 8.6095 (11)
β (°) 94.906 (2)
V3)1382.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.41 × 0.36 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.883, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3821, 1953, 1919
Rint0.020
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.05
No. of reflections1953
No. of parameters161
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.16
Absolute structureFlack (1983), 653 Friedel pairs
Absolute structure parameter0.034 (17)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O6i0.962.453.367 (4)160.3
C2—H2B···S1ii0.962.993.841 (4)147.3
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y1/2, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR20100718).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. (2004). Coord. Chem. Rev. 248, 351–375.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2000). Acta Cryst. C56, 418–420.  CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds