organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phenyl­sulfin­yl)-2,4,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 16 September 2010; accepted 25 September 2010; online 2 October 2010)

In the title mol­ecule, C17H15ClO2S, the 4-chloro­phenyl ring is oriented approximately perpendicular to the mean plane of the benzofuran ring [dihedral angle = 88.98 (4)°]. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O and C—H⋯π inter­actions, forming right-hand pseudo-helices along the a axis.

Related literature

For the structures of related benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o2325.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products containing benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO2S

  • Mr = 318.80

  • Orthorhombic, P n a 21

  • a = 12.1259 (10) Å

  • b = 19.3925 (16) Å

  • c = 6.4744 (5) Å

  • V = 1522.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.44 × 0.28 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.937

  • 14409 measured reflections

  • 3468 independent reflections

  • 3134 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.03

  • 3468 reflections

  • 194 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1561 Friedel pairs

  • Flack parameter: −0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 4-chloro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.62 3.471 (2) 152
C11—H11CCgii 0.96 2.85 3.667 (2) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving a benzofuran ring system exhibit important pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-chlorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring makes a dihedral angle of 88.98 (4)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the SO unit (C13–H13···O2i; Table 1), and by an intermolecular C–H···π interaction between a methyl H atom and the 4-chlorophenyl ring (C11-H11C···Cgii; Table 1, Cg is the centroid of the C12–C17 4-chlorophenyl ring).

The title compound is crystallized in the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms. The space group is caused by a right hand pseudo-helix along the a axis (Fig. 2).

Related literature top

For the structures of related benzofuran derivatives, see: Choi et al. (2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products containing benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

3-Chloroperoxybenzoic acid (77%, 291 mg, 1.3 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran (363 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 452–453 K; Rf = 0.62 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

Many compounds involving a benzofuran ring system exhibit important pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-chlorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring makes a dihedral angle of 88.98 (4)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the SO unit (C13–H13···O2i; Table 1), and by an intermolecular C–H···π interaction between a methyl H atom and the 4-chlorophenyl ring (C11-H11C···Cgii; Table 1, Cg is the centroid of the C12–C17 4-chlorophenyl ring).

The title compound is crystallized in the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms. The space group is caused by a right hand pseudo-helix along the a axis (Fig. 2).

For the structures of related benzofuran derivatives, see: Choi et al. (2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products containing benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound; Cg denotes the centroid of the C12-C17 ring. Hydrogen atoms not involved in hydrogen bonds have been excluded for clarity. Symmetry codes: (i) x -1/2, - y + 1/2, z (ii) x, y, z - 1 (iii) x 1/2, - y + 1/2, z (iv) x, y, z + 1
3-(4-Chlorophenylsulfinyl)-2,4,6-trimethyl-1-benzofuran top
Crystal data top
C17H15ClO2SF(000) = 664
Mr = 318.80Dx = 1.391 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5206 reflections
a = 12.1259 (10) Åθ = 2.7–26.9°
b = 19.3925 (16) ŵ = 0.39 mm1
c = 6.4744 (5) ÅT = 296 K
V = 1522.5 (2) Å3Block, colourless
Z = 40.44 × 0.28 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3468 independent reflections
Radiation source: rotating anode3134 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
φ and ω scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2525
Tmin = 0.848, Tmax = 0.937l = 88
14409 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1747P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3468 reflectionsΔρmax = 0.16 e Å3
194 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 1561 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C17H15ClO2SV = 1522.5 (2) Å3
Mr = 318.80Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.1259 (10) ŵ = 0.39 mm1
b = 19.3925 (16) ÅT = 296 K
c = 6.4744 (5) Å0.44 × 0.28 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3468 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3134 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.937Rint = 0.028
14409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.24 e Å3
3468 reflectionsAbsolute structure: Flack (1983), 1561 Friedel pairs
194 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.58821 (4)0.24616 (2)0.00652 (10)0.04345 (12)
Cl0.49572 (6)0.44910 (4)0.73907 (14)0.0840 (2)
O10.32383 (10)0.13450 (6)0.0716 (2)0.0445 (3)
O20.69629 (11)0.21294 (7)0.0504 (3)0.0574 (4)
C10.48058 (14)0.18533 (8)0.0312 (3)0.0377 (4)
C20.45571 (14)0.13178 (8)0.1815 (3)0.0373 (4)
C30.50175 (15)0.10563 (9)0.3645 (3)0.0418 (4)
C40.44487 (17)0.05245 (10)0.4608 (3)0.0483 (5)
H40.47390.03430.58210.058*
C50.34541 (15)0.02446 (10)0.3847 (4)0.0503 (5)
C60.30164 (16)0.04966 (9)0.2031 (4)0.0478 (5)
H60.23690.03190.14730.057*
C70.35838 (16)0.10246 (9)0.1083 (3)0.0400 (4)
C80.40014 (15)0.18465 (9)0.1136 (3)0.0405 (4)
C90.60623 (18)0.13287 (11)0.4595 (3)0.0535 (5)
H9A0.58970.17280.54160.080*
H9B0.65710.14530.35210.080*
H9C0.63860.09790.54520.080*
C100.2873 (2)0.03139 (12)0.5061 (6)0.0758 (7)
H10A0.21130.03340.46520.114*
H10B0.29190.02120.65090.114*
H10C0.32190.07500.47920.114*
C110.37730 (19)0.22734 (11)0.2970 (4)0.0509 (5)
H11A0.31260.25470.27290.076*
H11B0.36540.19800.41440.076*
H11C0.43900.25710.32320.076*
C120.55633 (14)0.30025 (8)0.2240 (3)0.0390 (4)
C130.45411 (16)0.33225 (10)0.2400 (4)0.0485 (5)
H130.39860.32260.14530.058*
C140.43614 (17)0.37853 (10)0.3984 (4)0.0522 (5)
H140.36840.40060.41110.063*
C150.51924 (18)0.39180 (9)0.5371 (4)0.0491 (5)
C160.62023 (17)0.36065 (9)0.5241 (4)0.0497 (4)
H160.67480.36990.62110.060*
C170.63960 (16)0.31487 (10)0.3627 (4)0.0464 (5)
H170.70840.29420.34830.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0401 (2)0.0491 (2)0.0411 (2)0.00916 (18)0.0045 (2)0.0011 (2)
Cl0.0895 (5)0.0805 (4)0.0819 (5)0.0023 (4)0.0111 (4)0.0341 (4)
O10.0401 (7)0.0475 (7)0.0461 (8)0.0058 (5)0.0063 (6)0.0037 (6)
O20.0389 (7)0.0638 (8)0.0695 (11)0.0017 (6)0.0088 (7)0.0075 (8)
C10.0372 (8)0.0412 (8)0.0347 (9)0.0036 (6)0.0007 (8)0.0015 (7)
C20.0358 (9)0.0383 (8)0.0377 (9)0.0011 (7)0.0055 (8)0.0016 (7)
C30.0408 (9)0.0443 (9)0.0403 (10)0.0061 (7)0.0006 (8)0.0016 (8)
C40.0461 (10)0.0503 (10)0.0485 (12)0.0094 (8)0.0031 (9)0.0120 (8)
C50.0449 (11)0.0427 (9)0.0632 (14)0.0044 (7)0.0116 (10)0.0114 (9)
C60.0366 (9)0.0418 (8)0.0649 (14)0.0034 (7)0.0024 (9)0.0049 (9)
C70.0381 (9)0.0405 (8)0.0416 (10)0.0022 (7)0.0013 (8)0.0001 (8)
C80.0407 (9)0.0428 (9)0.0380 (10)0.0026 (7)0.0010 (8)0.0006 (7)
C90.0506 (12)0.0615 (12)0.0485 (14)0.0018 (9)0.0076 (10)0.0025 (9)
C100.0633 (14)0.0679 (13)0.096 (2)0.0044 (11)0.0056 (16)0.0395 (15)
C110.0522 (11)0.0588 (11)0.0416 (11)0.0017 (10)0.0031 (9)0.0068 (9)
C120.0379 (9)0.0373 (8)0.0417 (10)0.0054 (7)0.0014 (8)0.0037 (8)
C130.0431 (10)0.0481 (10)0.0542 (12)0.0012 (8)0.0102 (10)0.0042 (9)
C140.0441 (10)0.0460 (10)0.0666 (14)0.0061 (8)0.0001 (10)0.0011 (10)
C150.0583 (12)0.0382 (9)0.0508 (12)0.0032 (8)0.0049 (10)0.0034 (9)
C160.0481 (10)0.0501 (10)0.0509 (12)0.0060 (8)0.0088 (11)0.0027 (10)
C170.0358 (9)0.0481 (9)0.0553 (13)0.0030 (8)0.0046 (9)0.0018 (9)
Geometric parameters (Å, º) top
S—O21.4878 (15)C9—H9A0.9600
S—C11.7665 (17)C9—H9B0.9600
S—C121.798 (2)C9—H9C0.9600
Cl—C151.740 (2)C10—H10A0.9600
O1—C81.370 (2)C10—H10B0.9600
O1—C71.385 (2)C10—H10C0.9600
C1—C81.353 (3)C11—H11A0.9600
C1—C21.455 (2)C11—H11B0.9600
C2—C71.393 (3)C11—H11C0.9600
C2—C31.405 (3)C12—C171.381 (3)
C3—C41.389 (3)C12—C131.390 (3)
C3—C91.504 (3)C13—C141.380 (3)
C4—C51.411 (3)C13—H130.9300
C4—H40.9300C14—C151.374 (3)
C5—C61.379 (3)C14—H140.9300
C5—C101.512 (3)C15—C161.368 (3)
C6—C71.378 (3)C16—C171.391 (3)
C6—H60.9300C16—H160.9300
C8—C111.474 (3)C17—H170.9300
O2—S—C1110.14 (8)H9A—C9—H9C109.5
O2—S—C12107.01 (9)H9B—C9—H9C109.5
C1—S—C1299.20 (8)C5—C10—H10A109.5
C8—O1—C7106.32 (15)C5—C10—H10B109.5
C8—C1—C2107.89 (15)H10A—C10—H10B109.5
C8—C1—S118.45 (14)C5—C10—H10C109.5
C2—C1—S133.66 (14)H10A—C10—H10C109.5
C7—C2—C3118.46 (16)H10B—C10—H10C109.5
C7—C2—C1103.84 (16)C8—C11—H11A109.5
C3—C2—C1137.70 (17)C8—C11—H11B109.5
C4—C3—C2116.71 (17)H11A—C11—H11B109.5
C4—C3—C9119.73 (19)C8—C11—H11C109.5
C2—C3—C9123.55 (18)H11A—C11—H11C109.5
C3—C4—C5123.59 (19)H11B—C11—H11C109.5
C3—C4—H4118.2C17—C12—C13120.78 (18)
C5—C4—H4118.2C17—C12—S118.16 (14)
C6—C5—C4119.37 (18)C13—C12—S120.72 (15)
C6—C5—C10121.2 (2)C14—C13—C12119.13 (19)
C4—C5—C10119.5 (2)C14—C13—H13120.4
C7—C6—C5116.80 (19)C12—C13—H13120.4
C7—C6—H6121.6C15—C14—C13119.45 (18)
C5—C6—H6121.6C15—C14—H14120.3
C6—C7—O1123.85 (18)C13—C14—H14120.3
C6—C7—C2125.07 (18)C16—C15—C14122.23 (19)
O1—C7—C2111.06 (15)C16—C15—Cl118.38 (18)
C1—C8—O1110.88 (17)C14—C15—Cl119.39 (16)
C1—C8—C11133.50 (17)C15—C16—C17118.6 (2)
O1—C8—C11115.58 (16)C15—C16—H16120.7
C3—C9—H9A109.5C17—C16—H16120.7
C3—C9—H9B109.5C12—C17—C16119.75 (18)
H9A—C9—H9B109.5C12—C17—H17120.1
C3—C9—H9C109.5C16—C17—H17120.1
O2—S—C1—C8136.54 (15)C1—C2—C7—C6178.86 (18)
C12—S—C1—C8111.43 (16)C3—C2—C7—O1179.46 (15)
O2—S—C1—C243.6 (2)C1—C2—C7—O10.29 (19)
C12—S—C1—C268.45 (18)C2—C1—C8—O10.3 (2)
C8—C1—C2—C70.3 (2)S—C1—C8—O1179.82 (13)
S—C1—C2—C7179.78 (15)C2—C1—C8—C11177.3 (2)
C8—C1—C2—C3179.3 (2)S—C1—C8—C112.6 (3)
S—C1—C2—C30.6 (3)C7—O1—C8—C10.1 (2)
C7—C2—C3—C40.9 (3)C7—O1—C8—C11177.95 (16)
C1—C2—C3—C4178.8 (2)O2—S—C12—C1714.13 (17)
C7—C2—C3—C9179.91 (18)C1—S—C12—C17128.60 (15)
C1—C2—C3—C90.3 (3)O2—S—C12—C13172.53 (15)
C2—C3—C4—C50.1 (3)C1—S—C12—C1358.05 (16)
C9—C3—C4—C5178.97 (19)C17—C12—C13—C140.7 (3)
C3—C4—C5—C61.1 (3)S—C12—C13—C14173.88 (15)
C3—C4—C5—C10177.4 (2)C12—C13—C14—C150.3 (3)
C4—C5—C6—C71.1 (3)C13—C14—C15—C160.1 (3)
C10—C5—C6—C7177.4 (2)C13—C14—C15—Cl178.98 (17)
C5—C6—C7—O1178.26 (17)C14—C15—C16—C171.0 (3)
C5—C6—C7—C20.1 (3)Cl—C15—C16—C17179.89 (16)
C8—O1—C7—C6178.73 (19)C13—C12—C17—C161.8 (3)
C8—O1—C7—C20.14 (19)S—C12—C17—C16175.18 (16)
C3—C2—C7—C60.9 (3)C15—C16—C17—C122.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 4-chlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.623.471 (2)152
C11—H11C···Cgii0.962.853.667 (2)144
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H15ClO2S
Mr318.80
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)12.1259 (10), 19.3925 (16), 6.4744 (5)
V3)1522.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.44 × 0.28 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.848, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
14409, 3468, 3134
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.03
No. of reflections3468
No. of parameters194
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.24
Absolute structureFlack (1983), 1561 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 4-chlorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.623.471 (2)152.3
C11—H11C···Cgii0.962.853.667 (2)144.1
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds