organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-[2-(3-Fur­yl)eth­yl]-7,8-di­methyl-3,5,6,6a,7,8,9,10-octa­hydro-1H-naphtho­[1,8a-c]furan-3-one

aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Science, University of Karachi, Karachi 75270, Pakistan, and cChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 27 August 2010; accepted 2 September 2010; online 11 September 2010)

In the title mol­ecule, C20H26O3, a clerodane diterpenoid isolated from Dodonaea viscosa­, the trans-fused six-membered rings of the deca­line system display chair conformations. The five-membered lactone ring adopts an envelope conformation and the five-membered furan ring is essentially planar with a maximum deviation of 0.0052 (12) Å.

Related literature

For the absolute stereochemistry of the title compound from NMR and literature data, see: Jefferies & Payne (1967[Jefferies, P. R. & Payne, T. G. (1967). Tetrahedron Lett. 1, 4777-4778.]). For background to natural product chemistry, see: Arfan et al. (2010[Arfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shah, M. R. (2010). J. Enz. Inhib. Med. Chem. 25, 296-299.]); Khan et al. (2005[Khan, S. B., Azhar ul, H., Afza, N., Malik, A., Khan, M. T. H., Shah, M. R. & Choudhary, M. I. (2005). Chem. Pharm. Bull. 53, 86-89.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26O3

  • Mr = 314.41

  • Orthorhombic, P 21 21 21

  • a = 9.1343 (8) Å

  • b = 11.8752 (10) Å

  • c = 15.5255 (13) Å

  • V = 1684.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.46 × 0.21 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.994

  • 17210 measured reflections

  • 2378 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.05

  • 2378 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and OLEX2; molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our work on Natural Product chemistry (Arfan et al., 2010) and in view of the important role played by natural products in medicinal chemistry (Khan et al., 2005), the plant Dodonaea viscosa has been subjected to phytochemical investigation which resulted in the isolation of the title compound.

The title molecule (Fig. 1) is chiral, but its absolute configuration could not be determined from the crystallographic data. However, the absolute stereochemistry of the compound was established from NMR and literature data (Jefferies et al., 1967). The molecule has four chiral centers and the two trans fused cyclohexyl rings of decaline, C7–C14 and C13–C18, adopt chair conformations. The five-membered lactone ring adopts a C13-envelope conformation with C13 0.625 (3) Å out of the plane formed by the rest of the ring atoms. The five-membered furan ring is essentially planar with maximum deviation of any atom from the plane being 0.0052 (12) Å for C2. There are no significant hydrogen bonds or π-π interactions between the molecules although there may be a weak C—H···π interaction linking neighbouring molecules; C2—H2···C1 3.747 (3)Å (under 1/2 + x, 1.5 - y, 1 - z). This leads to zigzag chains running parallel to the a axis (Fig. 2).

Related literature top

For the absolute stereochemistry of the title compound from NMR and literature data, see: Jefferies et al. (1967). For background to natural product chemistry, see: Arfan et al. (2010); Khan et al. (2005).

Experimental top

The whole plant of Dodonaea viscosa (50 kg) was powdered and extracted with methanol (100 L × 3) at room temperature and the residue (1 kg) was separated under vacuum. The residue was suspended in water and extracted with n-hexane, chloroform, ethyl acetate and n-butanol, respectively. The chloroform fraction (500 g) was subjected repeatedly to column chromatography on silica gel using petroleum ether with a gradient of 15% ethyl acetate to yield the title compound (2 g). Colourless crystals suitable for X-ray crystallographic analysis were obtained from an ether–chloroform mixture(1:1) by slow evaporation of the solvent at room temperature.

Refinement top

H atoms were placed in geometric positions using a riding model with C—H distances constrained as 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene groups, respectively, and Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all others. Since the compound contains no heavy atoms an absolute configuration could not be determined; the Friedel pairs (1792) were merged.

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 20088b) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 20088b) and OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule with atom labels drawn with displacement ellipsoids at 50% probability level.
[Figure 2] Fig. 2. Unit cell packinig of the title compound showing C—H···π interactions as dashed lines.
7-[2-(3-Furyl)ethyl]-7,8-dimethyl-3,5,6,6a,7,8,9,10-octahydro-1H- naphtho[1,8a-c]furan-3-one top
Crystal data top
C20H26O3F(000) = 680
Mr = 314.41Dx = 1.240 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4592 reflections
a = 9.1343 (8) Åθ = 2.6–25.8°
b = 11.8752 (10) ŵ = 0.08 mm1
c = 15.5255 (13) ÅT = 150 K
V = 1684.1 (2) Å3Plate, colourless
Z = 40.46 × 0.21 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2378 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω rotation with narrow frames scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1212
Tmin = 0.963, Tmax = 0.994k = 1515
17210 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1493P]
where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C20H26O3V = 1684.1 (2) Å3
Mr = 314.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1343 (8) ŵ = 0.08 mm1
b = 11.8752 (10) ÅT = 150 K
c = 15.5255 (13) Å0.46 × 0.21 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2378 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2124 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.994Rint = 0.036
17210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2378 reflectionsΔρmin = 0.15 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7909 (2)0.60429 (16)0.47103 (12)0.0302 (4)
H10.73080.54660.49450.036*
O10.90632 (16)0.65328 (12)0.51339 (8)0.0364 (3)
C20.9617 (2)0.73164 (17)0.45834 (13)0.0363 (4)
H21.04220.77950.47100.044*
C30.8874 (2)0.73222 (16)0.38386 (13)0.0313 (4)
H30.90600.77870.33530.038*
C40.77393 (19)0.64889 (14)0.39168 (11)0.0243 (3)
C50.6611 (2)0.61806 (14)0.32528 (11)0.0263 (4)
H5A0.58670.56850.35200.032*
H5B0.70890.57540.27830.032*
C60.58507 (19)0.72228 (13)0.28730 (11)0.0232 (3)
H6A0.66150.77160.26240.028*
H6B0.53910.76420.33530.028*
C70.46681 (18)0.70275 (13)0.21744 (10)0.0205 (3)
C80.4031 (2)0.82001 (13)0.19732 (12)0.0274 (4)
H8A0.33940.84390.24470.041*
H8B0.34610.81650.14390.041*
H8C0.48310.87420.19050.041*
C90.53645 (18)0.64730 (14)0.13577 (10)0.0223 (3)
H90.58890.57810.15570.027*
C100.6498 (2)0.72123 (16)0.09011 (12)0.0310 (4)
H10A0.69540.67840.04320.047*
H10B0.72520.74440.13140.047*
H10C0.60150.78810.06650.047*
C110.42124 (19)0.60881 (15)0.06978 (10)0.0260 (4)
H11A0.37360.67610.04470.031*
H11B0.47130.56830.02250.031*
C120.30336 (19)0.53222 (15)0.10773 (10)0.0256 (4)
H12A0.34820.46060.12680.031*
H12B0.22950.51470.06300.031*
C130.22816 (18)0.59026 (14)0.18497 (10)0.0219 (3)
C140.34897 (18)0.61938 (13)0.25089 (10)0.0194 (3)
H140.40340.54710.25890.023*
C150.2826 (2)0.64366 (14)0.33993 (10)0.0237 (3)
H15A0.36060.66750.38030.028*
H15B0.21010.70530.33550.028*
C160.2082 (2)0.53662 (15)0.37365 (11)0.0280 (4)
H16A0.28320.47840.38530.034*
H16B0.15710.55350.42840.034*
C170.1000 (2)0.49250 (14)0.30904 (12)0.0281 (4)
H170.02180.44590.32790.034*
C180.11187 (19)0.51761 (15)0.22587 (11)0.0257 (4)
C190.0169 (2)0.52032 (18)0.16805 (12)0.0330 (4)
O40.11876 (15)0.45656 (14)0.15980 (10)0.0450 (4)
O50.00711 (14)0.61773 (13)0.12226 (9)0.0390 (3)
C200.12289 (19)0.68107 (16)0.14996 (12)0.0298 (4)
H20A0.09740.73610.19550.036*
H20B0.16740.72180.10090.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0278 (9)0.0339 (9)0.0288 (9)0.0042 (8)0.0020 (7)0.0021 (7)
O10.0330 (7)0.0472 (8)0.0288 (6)0.0075 (7)0.0079 (6)0.0087 (6)
C20.0273 (9)0.0389 (10)0.0426 (11)0.0006 (8)0.0051 (8)0.0131 (9)
C30.0259 (8)0.0338 (9)0.0341 (9)0.0024 (8)0.0017 (8)0.0050 (8)
C40.0216 (8)0.0248 (8)0.0265 (8)0.0019 (7)0.0001 (7)0.0044 (7)
C50.0281 (8)0.0231 (8)0.0277 (8)0.0004 (7)0.0053 (7)0.0019 (7)
C60.0247 (8)0.0202 (7)0.0245 (8)0.0023 (7)0.0018 (7)0.0015 (6)
C70.0235 (7)0.0183 (7)0.0196 (7)0.0008 (6)0.0006 (6)0.0005 (6)
C80.0317 (9)0.0192 (7)0.0313 (9)0.0031 (7)0.0000 (8)0.0022 (7)
C90.0239 (8)0.0222 (7)0.0209 (7)0.0020 (7)0.0008 (6)0.0015 (6)
C100.0299 (9)0.0357 (9)0.0274 (9)0.0036 (8)0.0068 (7)0.0036 (8)
C110.0263 (8)0.0331 (9)0.0188 (7)0.0008 (8)0.0014 (7)0.0020 (7)
C120.0259 (8)0.0310 (9)0.0200 (7)0.0013 (7)0.0004 (7)0.0056 (7)
C130.0225 (8)0.0236 (8)0.0195 (7)0.0014 (6)0.0005 (6)0.0016 (6)
C140.0208 (7)0.0192 (7)0.0180 (7)0.0013 (6)0.0001 (6)0.0004 (6)
C150.0278 (8)0.0243 (8)0.0190 (7)0.0015 (7)0.0001 (7)0.0021 (6)
C160.0318 (9)0.0304 (9)0.0217 (8)0.0001 (8)0.0036 (7)0.0027 (7)
C170.0274 (8)0.0258 (8)0.0311 (8)0.0045 (7)0.0064 (7)0.0014 (7)
C180.0219 (8)0.0259 (8)0.0293 (8)0.0015 (7)0.0007 (7)0.0058 (7)
C190.0222 (8)0.0461 (11)0.0307 (9)0.0012 (8)0.0014 (8)0.0100 (8)
O40.0257 (7)0.0606 (10)0.0486 (8)0.0090 (7)0.0011 (7)0.0152 (8)
O50.0255 (7)0.0542 (9)0.0372 (7)0.0028 (6)0.0079 (6)0.0003 (7)
C200.0261 (9)0.0344 (9)0.0289 (9)0.0061 (7)0.0036 (7)0.0029 (7)
Geometric parameters (Å, º) top
C1—C41.350 (3)C10—H10C0.9800
C1—O11.372 (2)C11—C121.528 (2)
C1—H10.9500C11—H11A0.9900
O1—C21.361 (3)C11—H11B0.9900
C2—C31.341 (3)C12—C131.544 (2)
C2—H20.9500C12—H12A0.9900
C3—C41.438 (2)C12—H12B0.9900
C3—H30.9500C13—C181.509 (2)
C4—C51.503 (2)C13—C201.544 (2)
C5—C61.537 (2)C13—C141.544 (2)
C5—H5A0.9900C14—C151.537 (2)
C5—H5B0.9900C14—H141.0000
C6—C71.548 (2)C15—C161.534 (2)
C6—H6A0.9900C15—H15A0.9900
C6—H6B0.9900C15—H15B0.9900
C7—C81.541 (2)C16—C171.502 (3)
C7—C141.552 (2)C16—H16A0.9900
C7—C91.564 (2)C16—H16B0.9900
C8—H8A0.9800C17—C181.330 (3)
C8—H8B0.9800C17—H170.9500
C8—H8C0.9800C18—C191.480 (2)
C9—C101.532 (2)C19—O41.207 (2)
C9—C111.538 (2)C19—O51.361 (3)
C9—H91.0000O5—C201.470 (2)
C10—H10A0.9800C20—H20A0.9900
C10—H10B0.9800C20—H20B0.9900
C4—C1—O1111.05 (17)C9—C11—H11A108.8
C4—C1—H1124.5C12—C11—H11B108.8
O1—C1—H1124.5C9—C11—H11B108.8
C2—O1—C1105.92 (15)H11A—C11—H11B107.7
C3—C2—O1110.93 (18)C11—C12—C13110.32 (14)
C3—C2—H2124.5C11—C12—H12A109.6
O1—C2—H2124.5C13—C12—H12A109.6
C2—C3—C4106.76 (18)C11—C12—H12B109.6
C2—C3—H3126.6C13—C12—H12B109.6
C4—C3—H3126.6H12A—C12—H12B108.1
C1—C4—C3105.33 (16)C18—C13—C2096.26 (13)
C1—C4—C5127.53 (17)C18—C13—C14110.63 (13)
C3—C4—C5127.14 (16)C20—C13—C14121.47 (14)
C4—C5—C6112.14 (14)C18—C13—C12112.63 (14)
C4—C5—H5A109.2C20—C13—C12108.38 (14)
C6—C5—H5A109.2C14—C13—C12107.26 (13)
C4—C5—H5B109.2C15—C14—C13110.88 (13)
C6—C5—H5B109.2C15—C14—C7117.05 (13)
H5A—C5—H5B107.9C13—C14—C7114.63 (13)
C5—C6—C7117.61 (13)C15—C14—H14104.2
C5—C6—H6A107.9C13—C14—H14104.2
C7—C6—H6A107.9C7—C14—H14104.2
C5—C6—H6B107.9C16—C15—C14109.05 (13)
C7—C6—H6B107.9C16—C15—H15A109.9
H6A—C6—H6B107.2C14—C15—H15A109.9
C8—C7—C6105.68 (13)C16—C15—H15B109.9
C8—C7—C14112.47 (13)C14—C15—H15B109.9
C6—C7—C14110.19 (12)H15A—C15—H15B108.3
C8—C7—C9111.70 (13)C17—C16—C15110.66 (14)
C6—C7—C9110.32 (13)C17—C16—H16A109.5
C14—C7—C9106.55 (12)C15—C16—H16A109.5
C7—C8—H8A109.5C17—C16—H16B109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B108.1
C7—C8—H8C109.5C18—C17—C16121.11 (16)
H8A—C8—H8C109.5C18—C17—H17119.4
H8B—C8—H8C109.5C16—C17—H17119.4
C10—C9—C11108.94 (14)C17—C18—C19121.95 (17)
C10—C9—C7114.14 (14)C17—C18—C13126.47 (16)
C11—C9—C7112.76 (13)C19—C18—C13106.96 (15)
C10—C9—H9106.9O4—C19—O5121.90 (18)
C11—C9—H9106.9O4—C19—C18131.6 (2)
C7—C9—H9106.9O5—C19—C18106.47 (15)
C9—C10—H10A109.5C19—O5—C20109.57 (14)
C9—C10—H10B109.5O5—C20—C13104.40 (14)
H10A—C10—H10B109.5O5—C20—H20A110.9
C9—C10—H10C109.5C13—C20—H20A110.9
H10A—C10—H10C109.5O5—C20—H20B110.9
H10B—C10—H10C109.5C13—C20—H20B110.9
C12—C11—C9113.72 (13)H20A—C20—H20B108.9
C12—C11—H11A108.8
C4—C1—O1—C20.5 (2)C12—C13—C14—C762.01 (17)
C1—O1—C2—C30.8 (2)C8—C7—C14—C1567.88 (18)
O1—C2—C3—C40.8 (2)C6—C7—C14—C1549.74 (18)
O1—C1—C4—C30.1 (2)C9—C7—C14—C15169.42 (13)
O1—C1—C4—C5179.74 (15)C8—C7—C14—C1364.53 (18)
C2—C3—C4—C10.4 (2)C6—C7—C14—C13177.85 (13)
C2—C3—C4—C5179.75 (17)C9—C7—C14—C1358.16 (16)
C1—C4—C5—C6131.66 (19)C13—C14—C15—C1663.59 (17)
C3—C4—C5—C648.6 (2)C7—C14—C15—C16162.32 (14)
C4—C5—C6—C7179.56 (14)C14—C15—C16—C1753.83 (19)
C5—C6—C7—C8175.77 (15)C15—C16—C17—C1823.3 (2)
C5—C6—C7—C1454.02 (18)C16—C17—C18—C19152.89 (18)
C5—C6—C7—C963.35 (18)C16—C17—C18—C130.2 (3)
C8—C7—C9—C1053.24 (19)C20—C13—C18—C17118.6 (2)
C6—C7—C9—C1063.98 (17)C14—C13—C18—C178.4 (3)
C14—C7—C9—C10176.42 (14)C12—C13—C18—C17128.46 (19)
C8—C7—C9—C1171.78 (18)C20—C13—C18—C1937.37 (17)
C6—C7—C9—C11171.00 (13)C14—C13—C18—C19164.41 (14)
C14—C7—C9—C1151.41 (16)C12—C13—C18—C1975.55 (18)
C10—C9—C11—C12178.88 (14)C17—C18—C19—O444.6 (3)
C7—C9—C11—C1253.32 (19)C13—C18—C19—O4158.06 (19)
C9—C11—C12—C1355.58 (19)C17—C18—C19—O5132.85 (18)
C11—C12—C13—C18179.20 (14)C13—C18—C19—O524.47 (19)
C11—C12—C13—C2075.54 (17)O4—C19—O5—C20176.28 (17)
C11—C12—C13—C1457.24 (17)C18—C19—O5—C201.49 (19)
C18—C13—C14—C1539.51 (18)C19—O5—C20—C1325.98 (18)
C20—C13—C14—C1572.02 (19)C18—C13—C20—O537.35 (15)
C12—C13—C14—C15162.72 (13)C14—C13—C20—O5156.21 (14)
C18—C13—C14—C7174.78 (13)C12—C13—C20—O579.04 (16)
C20—C13—C14—C763.25 (19)

Experimental details

Crystal data
Chemical formulaC20H26O3
Mr314.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)9.1343 (8), 11.8752 (10), 15.5255 (13)
V3)1684.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.21 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.963, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
17210, 2378, 2124
Rint0.036
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.05
No. of reflections2378
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.15

Computer programs: APEX2 (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 20088b) and OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 20088b) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for financial support.

References

First citationArfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shah, M. R. (2010). J. Enz. Inhib. Med. Chem. 25, 296–299.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJefferies, P. R. & Payne, T. G. (1967). Tetrahedron Lett. 1, 4777–4778.  Google Scholar
First citationKhan, S. B., Azhar ul, H., Afza, N., Malik, A., Khan, M. T. H., Shah, M. R. & Choudhary, M. I. (2005). Chem. Pharm. Bull. 53, 86–89.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds