metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-azido-bis­­({N′-[1-(2-pyrid­yl-κN)ethyl­­idene]acetohydrazidato-κ2N′,O}dicopper(II))

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 24 August 2010; accepted 30 August 2010; online 18 September 2010)

The dimeric title compound, [Cu2(C9H10N3O)2(N3)2], is located on a crystallographic inversion center. The Cu atom is coordinated by a tridentate anionic hydrazone ligand and two bridging azide ligands in a distorted square-pyramidal coordination geometry. The non-bonding Cu⋯Cu distance is 3.238 (1) Å. Non-classical inter­molecular C—H⋯N hydrogen bonds link the dimers into chains along the c axis.

Related literature

For related dimeric copper(II) complexes with similar tridentate ligands, see: Recio Despaigne et al. (2009[Recio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct. 920, 97-102.]); Sen et al. (2007[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007). Polyhedron, 26, 1740-1744.]); Patole et al. (2003[Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C9H10N3O)2(N3)2]

  • Mr = 563.54

  • Triclinic, [P \overline 1]

  • a = 7.589 (3) Å

  • b = 8.955 (3) Å

  • c = 9.693 (4) Å

  • α = 66.534 (15)°

  • β = 69.461 (13)°

  • γ = 81.468 (16)°

  • V = 565.8 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.645, Tmax = 0.700

  • 3858 measured reflections

  • 2358 independent reflections

  • 1591 reflections with I > 2σ

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.093

  • S = 1.08

  • 2358 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 2.08 e Å−3

  • Δρmin = −2.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N3i 0.98 2.74 3.710 (4) 171
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The title compound is a dimeric copper(II) complex. Each copper atom is coordinated by a tridentate, anionic hydrazone ligand and two bridging azide ligands. The non-bonding Cu···Cu distance is 3.238 (1) Å, which is slightly longer than that in a related dicopper azido complex (Sen et al.., 2007).

The dimer is located on a crystallographic inversion center. The non-classical intermolecular hydrogen bonds of the type C—H···N link the dimeric compounds into one dimensional chains along the c axis.

Dimeric copper(II) complexes with similar tridentate ligands have been reported in the literature (Recio Despaigne et al., 2009; Sen et al. 2007; Patole et al. 2003).

Related literature top

For related dimeric copper(II) complexes with similar tridentate ligands, see: Recio Despaigne et al. (2009); Sen et al. (2007); Patole et al. (2003).

Experimental top

The tridentate ligand precursor, 2-benzoylpyridine-methyl hydrazone, was prepared according to the literature procedure (Recio Despaigne et al., 2009). To the tridentate ligand precursor (1.0 mmol), methanolic solution (20 ml) of copper nitrate trihydrate (0.241 g, 1.0 mmol), was added, followed by the addition, with constant stirring of a solution of sodium azide (0.065 g, 1.0 mmol) in minimum volume of water/methanol mixture. The final solution was kept at room temperature yielding brown square-shaped crystals suitable for X-ray diffraction after few days. Crystals were isolated by filtration and were air-dried.

Refinement top

All the hydrogen atoms were located in the difference Fourier map, nevertheless, all the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl—H = 0.98 Å while Uiso(H) = 1.2Ueq(Caryl) and 1.5Ueq(Cmethyl) H atoms. Although the residual electron in the final difference map is high, the refinement model appears to be reliable since the largest peak and hole are located near the heavy Cu atom at distances of 0.70 and 0.03 Å, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The unlabelled atoms are related to the labelled ones by symmetry operation: 1 - x, 2 - y, 2 - z.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. Hydrogen bonds are shown as dashed lines and H-atoms not involved in H-bonds have been excluded for clarity.
Di-µ-azido-bis({N'-[1-(2-pyridyl- κN)ethylidene]acetohydrazidato-κ2N',O}dicopper(II)) top
Crystal data top
[Cu2(C9H10N3O)2(N3)2]Z = 1
Mr = 563.54F(000) = 286
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.589 (3) ÅCell parameters from 3185 reflections
b = 8.955 (3) Åθ = 2.9–28.5°
c = 9.693 (4) ŵ = 1.92 mm1
α = 66.534 (15)°T = 150 K
β = 69.461 (13)°Prism, brown
γ = 81.468 (16)°0.25 × 0.20 × 0.20 mm
V = 565.8 (4) Å3
Data collection top
Bruker SMART APEXII
diffractometer
2358 independent reflections
Radiation source: fine-focus sealed tube1591 reflections with I > 2σ
Graphite monochromatorRint = 0.040
ω scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.645, Tmax = 0.700k = 1110
3858 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
2358 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 2.08 e Å3
0 restraintsΔρmin = 2.81 e Å3
Crystal data top
[Cu2(C9H10N3O)2(N3)2]γ = 81.468 (16)°
Mr = 563.54V = 565.8 (4) Å3
Triclinic, P1Z = 1
a = 7.589 (3) ÅMo Kα radiation
b = 8.955 (3) ŵ = 1.92 mm1
c = 9.693 (4) ÅT = 150 K
α = 66.534 (15)°0.25 × 0.20 × 0.20 mm
β = 69.461 (13)°
Data collection top
Bruker SMART APEXII
diffractometer
2358 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1591 reflections with I > 2σ
Tmin = 0.645, Tmax = 0.700Rint = 0.040
3858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 2.08 e Å3
2358 reflectionsΔρmin = 2.81 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34274 (3)0.93665 (3)0.95880 (3)0.02989 (14)
N50.2011 (2)0.7390 (2)1.0402 (2)0.0307 (5)
O10.4938 (2)0.8357 (2)0.8052 (2)0.0380 (5)
N10.4648 (3)1.1498 (2)0.8642 (2)0.0329 (5)
N60.2719 (3)0.6294 (3)0.9663 (2)0.0367 (6)
C80.4270 (3)0.6937 (3)0.8443 (3)0.0314 (6)
N20.5605 (3)1.2073 (2)0.7250 (2)0.0358 (6)
N40.1206 (2)0.9791 (2)1.1350 (2)0.0315 (5)
C10.0012 (3)0.8504 (3)1.2187 (3)0.0341 (6)
C20.1553 (3)0.8504 (4)1.3488 (3)0.0438 (8)
H20.24040.76191.40360.053*
C90.5264 (3)0.5944 (3)0.7465 (3)0.0436 (7)
H9A0.49380.63570.64830.065*
H9B0.48810.48060.80670.065*
H9C0.66270.60190.72020.065*
C50.0911 (3)1.1048 (3)1.1831 (3)0.0390 (7)
H50.17581.19351.12540.047*
C60.0467 (3)0.7153 (3)1.1593 (3)0.0351 (7)
C30.1850 (3)0.9815 (4)1.3992 (3)0.0470 (9)
H30.28880.98251.48910.056*
C40.0596 (4)1.1095 (4)1.3148 (3)0.0449 (7)
H40.07611.19971.34650.054*
N30.6520 (4)1.2683 (4)0.5959 (3)0.0644 (10)
C70.0748 (4)0.5681 (4)1.2321 (4)0.0564 (10)
H7A0.04110.50991.15940.085*
H7B0.20730.60221.25160.085*
H7C0.05560.49621.33280.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03078 (16)0.0297 (2)0.02843 (18)0.00779 (10)0.00486 (12)0.01154 (14)
N50.0319 (7)0.0317 (10)0.0289 (9)0.0042 (7)0.0062 (7)0.0133 (8)
O10.0400 (8)0.0382 (10)0.0350 (9)0.0100 (6)0.0044 (7)0.0163 (8)
N10.0386 (8)0.0306 (10)0.0287 (9)0.0063 (7)0.0068 (8)0.0117 (9)
N60.0383 (9)0.0368 (11)0.0351 (10)0.0048 (8)0.0079 (9)0.0154 (9)
C80.0389 (9)0.0296 (11)0.0318 (10)0.0017 (8)0.0140 (9)0.0148 (9)
N20.0404 (9)0.0327 (10)0.0316 (10)0.0034 (7)0.0105 (8)0.0091 (9)
N40.0303 (7)0.0331 (10)0.0310 (9)0.0027 (6)0.0079 (7)0.0126 (8)
C10.0286 (8)0.0403 (12)0.0295 (11)0.0040 (7)0.0073 (8)0.0098 (10)
C20.0346 (10)0.0535 (16)0.0353 (12)0.0070 (9)0.0012 (9)0.0150 (13)
C90.0495 (12)0.0421 (15)0.0402 (13)0.0022 (10)0.0097 (11)0.0200 (12)
C50.0395 (10)0.0399 (14)0.0386 (12)0.0032 (9)0.0109 (10)0.0162 (12)
C60.0323 (9)0.0352 (12)0.0343 (11)0.0074 (8)0.0070 (9)0.0102 (10)
C30.0388 (10)0.0623 (19)0.0358 (13)0.0030 (10)0.0028 (10)0.0234 (14)
C40.0484 (12)0.0489 (16)0.0437 (14)0.0071 (10)0.0130 (11)0.0277 (12)
N30.0746 (16)0.0654 (19)0.0323 (12)0.0125 (13)0.0042 (12)0.0045 (14)
C70.0493 (13)0.0495 (18)0.0599 (19)0.0198 (12)0.0053 (13)0.0229 (16)
Geometric parameters (Å, º) top
Cu1—N51.941 (2)C1—C61.484 (4)
Cu1—N11.969 (2)C2—C31.403 (5)
Cu1—O11.979 (2)C2—H20.9500
Cu1—N42.051 (2)C9—H9A0.9800
Cu1—N1i2.4574 (18)C9—H9B0.9800
N5—C61.297 (3)C9—H9C0.9800
N5—N61.377 (4)C5—C41.394 (4)
O1—C81.300 (3)C5—H50.9500
N1—N21.218 (3)C6—C71.500 (3)
N1—Cu1i2.4574 (18)C3—C41.386 (4)
N6—C81.341 (3)C3—H30.9500
C8—C91.493 (5)C4—H40.9500
N2—N31.142 (3)C7—H7A0.9800
N4—C51.343 (4)C7—H7B0.9800
N4—C11.374 (3)C7—H7C0.9800
C1—C21.387 (4)
N5—Cu1—N1173.44 (6)C1—C2—C3119.8 (2)
N5—Cu1—O179.78 (9)C1—C2—H2120.1
N1—Cu1—O1101.14 (9)C3—C2—H2120.1
N5—Cu1—N480.27 (9)C8—C9—H9A109.5
N1—Cu1—N498.12 (10)C8—C9—H9B109.5
O1—Cu1—N4159.42 (8)H9A—C9—H9B109.5
N5—Cu1—N1i99.67 (7)C8—C9—H9C109.5
N1—Cu1—N1i86.64 (6)H9A—C9—H9C109.5
O1—Cu1—N1i98.75 (8)H9B—C9—H9C109.5
N4—Cu1—N1i89.51 (8)N4—C5—C4122.3 (2)
C6—N5—N6123.0 (2)N4—C5—H5118.9
C6—N5—Cu1119.7 (2)C4—C5—H5118.9
N6—N5—Cu1117.28 (14)N5—C6—C1113.21 (19)
C8—O1—Cu1110.27 (16)N5—C6—C7124.6 (3)
N2—N1—Cu1122.4 (2)C1—C6—C7122.2 (3)
N2—N1—Cu1i111.79 (13)C4—C3—C2118.5 (3)
Cu1—N1—Cu1i93.36 (6)C4—C3—H3120.7
C8—N6—N5107.9 (2)C2—C3—H3120.7
O1—C8—N6124.6 (3)C3—C4—C5119.4 (3)
O1—C8—C9118.6 (2)C3—C4—H4120.3
N6—C8—C9116.8 (2)C5—C4—H4120.3
N3—N2—N1176.3 (3)C6—C7—H7A109.5
C5—N4—C1119.0 (2)C6—C7—H7B109.5
C5—N4—Cu1128.98 (15)H7A—C7—H7B109.5
C1—N4—Cu1111.8 (2)C6—C7—H7C109.5
N4—C1—C2121.1 (3)H7A—C7—H7C109.5
N4—C1—C6114.9 (2)H7B—C7—H7C109.5
C2—C1—C6124.0 (2)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N3ii0.982.743.710 (4)171
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C9H10N3O)2(N3)2]
Mr563.54
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.589 (3), 8.955 (3), 9.693 (4)
α, β, γ (°)66.534 (15), 69.461 (13), 81.468 (16)
V3)565.8 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.645, 0.700
No. of measured, independent and
observed (I > 2σ) reflections
3858, 2358, 1591
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.093, 1.08
No. of reflections2358
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.08, 2.81

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N3i0.982.743.710 (4)171
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRecio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct. 920, 97–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007). Polyhedron, 26, 1740–1744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds