organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­benzimidazolium thio­cyanate–2-methyl­benzimidazole (1/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 29 July 2010; accepted 4 August 2010; online 11 August 2010)

In the crystal structure of the title compound, C8H9N2+·SCN·C8H8N2, the three components are linked by inter­molecular N—H⋯N and N—H⋯S hydrogen bonds into infinite chains along the c axis.

Related literature

For related structures, see: Bhattacharya et al. (2004[Bhattacharya, R., Chanda, S., Bocelli, G., Cantoni, A. & Ghosh, A. (2004). J. Chem. Crystallogr. 34, 393-400.]); Ding et al. (2004[Ding, C.-F., Zhang, S.-S., Li, X.-M., Xu, H. & Ouyang, P.-K. (2004). Acta Cryst. E60, o2441-o2443.]); Huang et al. (2006[Huang, X., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, o1833-o1835.]). For applications of benzimidazole derivatives in crystal engineering, see: Cai et al. (2002[Cai, C.-X., Tian, Y.-Q., Li, Y.-Z. & You, X.-Z. (2002). Acta Cryst. C58, m459-m460.]). For the biological properties of benzimidazole derivatives, see: Refaat (2010[Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.]); Ansari & Lal (2009[Ansari, K. F. & Lal, C. (2009). J. Chem. Sci. 121, 1017-1025.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N2+·SCN·C8H8N2

  • Mr = 323.42

  • Monoclinic, P 21 /n

  • a = 11.0952 (7) Å

  • b = 6.9664 (4) Å

  • c = 21.4195 (13) Å

  • β = 100.745 (1)°

  • V = 1626.56 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.988

  • 8812 measured reflections

  • 3193 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.03

  • 3193 reflections

  • 222 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5 0.90 (2) 1.90 (2) 2.799 (2) 176 (2)
N2—H2N⋯N4i 0.90 (2) 1.88 (2) 2.781 (2) 179 (2)
N3—H3N⋯S1 0.86 (2) 2.47 (2) 3.317 (2) 168 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives are biologically active compounds (Refaat, 2010; Ansari & Lal, 2009). Their applications in crystal-engineering have been reported (Cai et al., 2002). The crystal structures of several compounds similar to the title compound have been publsihed (Bhattacharya et al., 2004; Ding et al., 2004; Huang et al., 2006. In this article, the preparation and crystal structure of the title compound is presented.

The asymmetric unit of the title compound contains a 2-methylbenzimidazolium cation, a thiocyante anion and a molecule of 2-methylbenzimidazole (Fig. 1). In the crystal structure, the three moieties are linked by intramolecular N—H···N and N—H···S hydrogen bondings into infinite one-dimensional chains (Tab. 1 & Fig. 2).

Related literature top

For related structures, see: Bhattacharya et al. (2004); Ding et al. (2004); Huang et al. (2006). For applications of benzimidazole derivatives in crystal engineering, see: Cai et al. (2002). For the biological properties of benzimidazole derivatives, see: Refaat (2010); Ansari & Lal (2009).

Experimental top

An ethanolic solution (12 ml) of 2-methylbenzimidazole (9 mmol, 1.2 g) was added to an aqueous solution (10 ml) of FeCl3 (3 mmol) followed by addition of an aqueous solution (10 ml) of KSCN (9 mmol). The mixture was heated in a water bath for 15 min. The resulting precipitates were filtered off, washed with ethanol (50%) and recrystallized from ethanol whereupon the pale yellow crystals of the title compound were obtained unexpectedly.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.98 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5 Ueq(C). The N-bound hydrogen atoms were located in a difference Fourier map and were refined with a distance restraint of N—H 0.88 (2) Å.

Structure description top

Benzimidazole derivatives are biologically active compounds (Refaat, 2010; Ansari & Lal, 2009). Their applications in crystal-engineering have been reported (Cai et al., 2002). The crystal structures of several compounds similar to the title compound have been publsihed (Bhattacharya et al., 2004; Ding et al., 2004; Huang et al., 2006. In this article, the preparation and crystal structure of the title compound is presented.

The asymmetric unit of the title compound contains a 2-methylbenzimidazolium cation, a thiocyante anion and a molecule of 2-methylbenzimidazole (Fig. 1). In the crystal structure, the three moieties are linked by intramolecular N—H···N and N—H···S hydrogen bondings into infinite one-dimensional chains (Tab. 1 & Fig. 2).

For related structures, see: Bhattacharya et al. (2004); Ding et al. (2004); Huang et al. (2006). For applications of benzimidazole derivatives in crystal engineering, see: Cai et al. (2002). For the biological properties of benzimidazole derivatives, see: Refaat (2010); Ansari & Lal (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions as viewed down b. Symmetry code: i = x + 1/2, -y + 1/2, z - 1/2.
2-Methylbenzimidazolium thiocyanate–2-methylbenzimidazole (1/1) top
Crystal data top
C8H9N2+·SCN·C8H8N2F(000) = 680
Mr = 323.42Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1739 reflections
a = 11.0952 (7) Åθ = 2.3–25.1°
b = 6.9664 (4) ŵ = 0.21 mm1
c = 21.4195 (13) ÅT = 100 K
β = 100.745 (1)°Plate, yellow
V = 1626.56 (17) Å30.25 × 0.25 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3193 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.950, Tmax = 0.988k = 78
8812 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.035P)2 + 0.6349P]
where P = (Fo2 + 2Fc2)/3
3193 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H9N2+·SCN·C8H8N2V = 1626.56 (17) Å3
Mr = 323.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0952 (7) ŵ = 0.21 mm1
b = 6.9664 (4) ÅT = 100 K
c = 21.4195 (13) Å0.25 × 0.25 × 0.06 mm
β = 100.745 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2427 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.988Rint = 0.037
8812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
3193 reflectionsΔρmin = 0.28 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76009 (14)0.1676 (2)0.43464 (7)0.0183 (4)
H1N0.7853 (18)0.196 (3)0.4761 (8)0.033 (6)*
N20.76652 (13)0.1089 (2)0.33548 (7)0.0169 (3)
H2N0.7976 (19)0.090 (3)0.2999 (8)0.038 (7)*
C10.96598 (16)0.1988 (3)0.40543 (9)0.0233 (4)
H1A1.01050.07840.41650.035*
H1B0.98510.28890.44100.035*
H1C0.99080.25460.36780.035*
C20.83267 (16)0.1602 (3)0.39179 (8)0.0174 (4)
C30.64561 (16)0.0800 (3)0.34260 (9)0.0170 (4)
C40.54091 (16)0.0242 (3)0.29996 (9)0.0198 (4)
H40.54290.00240.25670.024*
C50.43398 (17)0.0096 (3)0.32393 (10)0.0244 (5)
H50.36080.02900.29630.029*
C60.43008 (17)0.0498 (3)0.38747 (10)0.0262 (5)
H60.35450.03810.40190.031*
C70.53387 (17)0.1064 (3)0.42968 (10)0.0227 (4)
H70.53170.13520.47280.027*
C80.64148 (16)0.1190 (3)0.40569 (9)0.0173 (4)
N30.49936 (14)0.4693 (2)0.66246 (7)0.0179 (3)
H3N0.5709 (14)0.483 (3)0.6527 (9)0.022 (5)*
N40.36143 (13)0.4455 (2)0.72545 (7)0.0175 (3)
C90.57509 (16)0.5348 (3)0.77709 (9)0.0236 (4)
H9A0.53770.58430.81190.035*
H9B0.62830.63340.76400.035*
H9C0.62390.42050.79150.035*
C100.47689 (16)0.4834 (3)0.72223 (9)0.0174 (4)
C110.39134 (16)0.4178 (3)0.62290 (9)0.0173 (4)
C120.36142 (17)0.3839 (3)0.55802 (9)0.0212 (4)
H120.42090.39440.53150.025*
C130.24092 (18)0.3343 (3)0.53365 (9)0.0235 (4)
H130.21710.30920.48950.028*
C140.15347 (18)0.3204 (3)0.57299 (9)0.0239 (4)
H140.07150.28650.55490.029*
C150.18384 (16)0.3548 (3)0.63752 (9)0.0204 (4)
H150.12400.34550.66380.024*
C160.30494 (16)0.4037 (3)0.66294 (8)0.0167 (4)
S10.79070 (4)0.52630 (8)0.64995 (2)0.02656 (15)
N50.83250 (16)0.2375 (3)0.56491 (8)0.0283 (4)
C170.81466 (16)0.3567 (3)0.60007 (9)0.0208 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0217 (8)0.0189 (9)0.0143 (8)0.0006 (7)0.0030 (6)0.0004 (7)
N20.0162 (8)0.0193 (9)0.0156 (8)0.0004 (6)0.0041 (6)0.0006 (7)
C10.0184 (10)0.0266 (12)0.0237 (10)0.0000 (8)0.0006 (8)0.0034 (9)
C20.0200 (9)0.0152 (10)0.0169 (9)0.0024 (7)0.0029 (7)0.0009 (8)
C30.0186 (9)0.0132 (10)0.0198 (10)0.0019 (7)0.0051 (7)0.0022 (8)
C40.0197 (9)0.0175 (10)0.0210 (10)0.0005 (8)0.0008 (7)0.0007 (9)
C50.0181 (9)0.0196 (11)0.0343 (12)0.0004 (8)0.0016 (8)0.0046 (9)
C60.0213 (10)0.0226 (11)0.0380 (12)0.0022 (8)0.0145 (9)0.0068 (10)
C70.0283 (11)0.0180 (11)0.0248 (10)0.0030 (8)0.0125 (8)0.0040 (9)
C80.0197 (9)0.0115 (10)0.0207 (10)0.0015 (7)0.0043 (7)0.0028 (8)
N30.0143 (8)0.0202 (9)0.0205 (8)0.0002 (7)0.0063 (6)0.0005 (7)
N40.0178 (8)0.0181 (9)0.0165 (8)0.0002 (6)0.0031 (6)0.0013 (7)
C90.0197 (10)0.0262 (11)0.0242 (10)0.0011 (8)0.0021 (8)0.0001 (9)
C100.0180 (9)0.0149 (10)0.0193 (9)0.0001 (7)0.0032 (7)0.0002 (8)
C110.0192 (9)0.0131 (10)0.0193 (9)0.0011 (7)0.0027 (7)0.0009 (8)
C120.0291 (10)0.0159 (10)0.0201 (10)0.0016 (8)0.0083 (8)0.0022 (8)
C130.0328 (11)0.0177 (11)0.0177 (10)0.0005 (9)0.0011 (8)0.0000 (9)
C140.0230 (10)0.0202 (11)0.0258 (11)0.0027 (8)0.0018 (8)0.0027 (9)
C150.0182 (9)0.0188 (11)0.0240 (10)0.0017 (8)0.0032 (8)0.0029 (9)
C160.0213 (9)0.0126 (9)0.0159 (9)0.0023 (7)0.0025 (7)0.0027 (8)
S10.0226 (3)0.0293 (3)0.0296 (3)0.0040 (2)0.0095 (2)0.0066 (2)
N50.0336 (10)0.0324 (11)0.0184 (9)0.0026 (8)0.0033 (7)0.0006 (8)
C170.0166 (9)0.0285 (12)0.0165 (9)0.0007 (8)0.0010 (7)0.0060 (9)
Geometric parameters (Å, º) top
N1—C21.330 (2)N3—C111.380 (2)
N1—C81.388 (2)N3—H3N0.862 (15)
N1—H1N0.901 (15)N4—C101.322 (2)
N2—C21.338 (2)N4—C161.399 (2)
N2—C31.393 (2)C9—C101.489 (2)
N2—H2N0.902 (15)C9—H9A0.9800
C1—C21.478 (2)C9—H9B0.9800
C1—H1A0.9800C9—H9C0.9800
C1—H1B0.9800C11—C121.387 (3)
C1—H1C0.9800C11—C161.404 (3)
C3—C81.387 (2)C12—C131.385 (3)
C3—C41.392 (2)C12—H120.9500
C4—C51.381 (3)C13—C141.402 (3)
C4—H40.9500C13—H130.9500
C5—C61.398 (3)C14—C151.381 (3)
C5—H50.9500C14—H140.9500
C6—C71.382 (3)C15—C161.395 (2)
C6—H60.9500C15—H150.9500
C7—C81.388 (3)S1—C171.647 (2)
C7—H70.9500N5—C171.163 (2)
N3—C101.353 (2)
C2—N1—C8109.14 (15)C10—N3—C11107.93 (15)
C2—N1—H1N124.9 (13)C10—N3—H3N124.1 (13)
C8—N1—H1N125.9 (13)C11—N3—H3N127.8 (13)
C2—N2—C3108.51 (15)C10—N4—C16104.90 (15)
C2—N2—H2N124.6 (14)C10—C9—H9A109.5
C3—N2—H2N126.8 (14)C10—C9—H9B109.5
C2—C1—H1A109.5H9A—C9—H9B109.5
C2—C1—H1B109.5C10—C9—H9C109.5
H1A—C1—H1B109.5H9A—C9—H9C109.5
C2—C1—H1C109.5H9B—C9—H9C109.5
H1A—C1—H1C109.5N4—C10—N3112.71 (15)
H1B—C1—H1C109.5N4—C10—C9125.46 (17)
N1—C2—N2109.35 (15)N3—C10—C9121.82 (16)
N1—C2—C1124.67 (16)N3—C11—C12132.64 (17)
N2—C2—C1125.96 (17)N3—C11—C16104.88 (16)
C8—C3—C4121.23 (17)C12—C11—C16122.48 (17)
C8—C3—N2106.61 (15)C13—C12—C11116.98 (17)
C4—C3—N2132.17 (17)C13—C12—H12121.5
C5—C4—C3116.49 (18)C11—C12—H12121.5
C5—C4—H4121.8C12—C13—C14121.20 (18)
C3—C4—H4121.8C12—C13—H13119.4
C4—C5—C6122.11 (18)C14—C13—H13119.4
C4—C5—H5118.9C15—C14—C13121.49 (18)
C6—C5—H5118.9C15—C14—H14119.3
C7—C6—C5121.38 (18)C13—C14—H14119.3
C7—C6—H6119.3C14—C15—C16118.08 (17)
C5—C6—H6119.3C14—C15—H15121.0
C6—C7—C8116.43 (18)C16—C15—H15121.0
C6—C7—H7121.8C15—C16—N4130.66 (17)
C8—C7—H7121.8C15—C16—C11119.76 (17)
C3—C8—C7122.36 (17)N4—C16—C11109.58 (15)
C3—C8—N1106.39 (15)N5—C17—S1179.47 (18)
C7—C8—N1131.25 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.90 (2)1.90 (2)2.799 (2)176 (2)
N2—H2N···N4i0.90 (2)1.88 (2)2.781 (2)179 (2)
N3—H3N···S10.86 (2)2.47 (2)3.317 (2)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H9N2+·SCN·C8H8N2
Mr323.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.0952 (7), 6.9664 (4), 21.4195 (13)
β (°) 100.745 (1)
V3)1626.56 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.25 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8812, 3193, 2427
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.03
No. of reflections3193
No. of parameters222
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.90 (2)1.90 (2)2.799 (2)176 (2)
N2—H2N···N4i0.90 (2)1.88 (2)2.781 (2)179 (2)
N3—H3N···S10.86 (2)2.47 (2)3.317 (2)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP009/2008 C).

References

First citationAnsari, K. F. & Lal, C. (2009). J. Chem. Sci. 121, 1017–1025.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBhattacharya, R., Chanda, S., Bocelli, G., Cantoni, A. & Ghosh, A. (2004). J. Chem. Crystallogr. 34, 393–400.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, C.-X., Tian, Y.-Q., Li, Y.-Z. & You, X.-Z. (2002). Acta Cryst. C58, m459–m460.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDing, C.-F., Zhang, S.-S., Li, X.-M., Xu, H. & Ouyang, P.-K. (2004). Acta Cryst. E60, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, o1833–o1835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRefaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds