metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-[(7-Chloro-4-quinol­yl)amino]-N,N-di­ethyl­penta­naminium}(tri­phenyl­phos­phine)gold(I) dinitrate

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 27 July 2010; accepted 3 August 2010; online 18 August 2010)

The title compound, [Au(C18H27ClN3)(C18H15P)](NO3)2, is a coordination complex of gold(I) triphenyl­phosphine with the N atom in the quinoline ring of the common anti­malarial compound chloro­quine (CQ). The pendant diethyl­amino group of the CQ ligand was found to be protonated. The complex exhibits a nearly linear coordination geometry around the AuI atom [N—Au—P = 176.94 (6)°], with Au—N and Au—P bond lengths of 2.070 (2) and 2.2338 (7) Å, respectively. The diethylammonium group and one of the two nitrate counter-ions are disordered with occupancy ratios of 0.519 (4):0.481 (4). The nitrate anions are hydrogen bound to both the amino and ammonium groups of the N,N-diethylpentanaminium fragment of the CQ.

Related literature

For related structures, see: Karle & Karle (1988[Karle, J. M. & Karle, I. L. (1988). Acta Cryst. C44, 1605-1608.]); Oleksyn & Serda (1993[Oleksyn, B. J. & Serda, P. (1993). Acta Cryst. B49, 530-534.]); Orlow et al. (2005[Orlow, A., Kalinowska-Tluscik, J. & Oleksyn, B. J. (2005). Acta Cryst. A61, C277-C278.]); Borissova et al. (2008[Borissova, A. O., Korlyukov, A. A., Antipin, M. Y. & Lyssenko, K. A. (2008). J. Phys. Chem. A, 112, 11519-11522.]); Thwaite et al. (2004[Thwaite, S. E., Schier, A. & Schmidbaur, H. (2004). Inorg. Chim. Acta, 357, 1549-1557.]). For background to the metal coordination chemistry of chloro­quine, see: Sánchez-Delgado et al. (1996[Sánchez-Delgado, R. A., Navarro, M., Pérez, H. & Urbino, J. A. (1996). J. Med. Chem. 39, 1095-1099.]); Navarro et al. (1997[Navarro, M., Sánchez-Delgado, R. A. & Pérez, H. (1997). J. Med. Chem. 40, 1937-1939.], 2004[Navarro, M., Vásquez, F., Sánchez-Delgado, R. A., Pérez, H., Sinou, V. & Schrével, J. (2004). J. Med. Chem. 47, 5204-5209.]). Widespread use of CQ has led to cross-resistance, limiting the efficacy of CQ-related treatments for malaria, see: World Health Organization (2010[World Health Organization (2010). Guidelines for the Treatment of Malaria, 2nd ed. Switzerland: World Health Organization.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C18H27ClN3)(C18H15P)](NO3)2

  • Mr = 904.13

  • Triclinic, [P \overline 1]

  • a = 10.2456 (5) Å

  • b = 13.1914 (6) Å

  • c = 13.6301 (7) Å

  • α = 85.866 (1)°

  • β = 88.126 (1)°

  • γ = 86.510 (1)°

  • V = 1833.22 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.18 mm−1

  • T = 125 K

  • 0.34 × 0.14 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.331, Tmax = 0.818

  • 25641 measured reflections

  • 10116 independent reflections

  • 8781 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.059

  • S = 1.02

  • 10116 reflections

  • 535 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O4 0.93 1.77 2.70 (2) 177
N5′—H5′⋯O4 0.93 2.00 2.81 (2) 144
N4—H4⋯O2′ 0.84 (2) 2.28 (2) 3.030 (6) 149 (3)
N4—H4⋯O3i 0.84 (2) 2.32 (3) 3.013 (5) 140 (3)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chloroquine (CQ) has been used in treatments against the malaria parasites Plasmodium falciparum and Plasmodium vivax. Wide use of CQ has led to cross-resistance, limiting the efficacy of CQ related treatments. (World Health Organization, 2010). Complexing CQ with metal containing fragments such as gold(I) triphenylphosphine and gold (III) tetrachloride can enhance its ability to combat CQ-resistant strains of malaria (Navarro et al. 1997; Navarro et al. 2004), as can CQ complexes of Rh and Ru (Sánchez-Delgado et al. 1996). While some of the biological effects of coordinating metals to chloroquine and ts derivatives have been reported, a lack of structure-activity correlation remains.

In the title complex (Fig. 1) gold(I) is coordinated to the nitrogen atom in the quinoline ring as proposed earlier (Navarro et al. 1997). The complex exhibits a nearly linear coordination geometry around gold, with an N—Au—P angle of 176.94 (6)°. The Au—N and Au—P bond distance are 2.070 (2) Å and 2.2338 (7) Å, respectively. These bond distances are similar to those found in thre structure of (triphenylphosphine)gold(I) chloride, with Au—P 2.2313 (4) Å (Borissova et al., 2008), as well as the Au—N and Au—P distances in the structure of the cationic pyridine adduct (triphenylphosphine)gold(I) pyridine tetrafluoroborate, with Au—N 2.073 (3) Å and Au—P 2.2364 (8) Å (Thwaite et al., 2004). The pendant diethylamino group (N4) of the CQ ligand in the title complex was found to be protonated, and the nitrate anions are hydrogen bound to both the N1 amino and N4 ammonium groups of the 1,4-pentanediamine fragment of the CQ.

Related literature top

For related structures, see: Karle & Karle (1988); Oleksyn & Serda (1993); Orlow et al. (2005); Borissova et al. (2008); Thwaite et al. (2004). For background to the metal coordination chemistry of chloroquine, see: Sánchez-Delgado et al. (1996); Navarro et al. (1997, 2004). Widespread use of CQ has led to cross-resistance, limiting the efficacy of CQ-related treatments for malaria, see: World Health Organization (2010).

Experimental top

[(CQ)Au(PPh3)][NO3] was prepared from chloroquine (CQ) free base and triphenylphosphine (PPh3) according to literature procedure (Navarro et al., 2004). The protonated title complex, [C36H42AuClPN3](NO3)2 was obtained by diffusion of diethyl ether into an acetone solution of [(CQ)Au(PPh3)][NO3] over a period of two weeks. All manipulations were carried out under nitrogen using common Schlenck technique. X-ray diffraction quality crystals were separated as colorless plates.

Refinement top

Hydrogen atoms on carbon were included in calculated positions and were refined using a riding model at C–H = 0.95, 0.98 and 0.99 Å and Uiso(H) = 1.2, 1.5 and 1.2 × Ueq(C) of the aryl, methyl and methylene C-atoms, respectively. The hydrogen atom on N4 was refined semi-freely with the help of a distance restraint at N–H = 0.88 Å and Uiso(H) = 1.2 × Ueq(N). The presence of a residual electron density peak and the proximity of a nitrate anion indicated that N5 was protonated. Hydrogen atoms on N5 were included in calculated positions and were refined using a riding model at N–H = 0.93 Å and Uiso(H) = 1.2 × Ueq(N) .

Structure description top

Chloroquine (CQ) has been used in treatments against the malaria parasites Plasmodium falciparum and Plasmodium vivax. Wide use of CQ has led to cross-resistance, limiting the efficacy of CQ related treatments. (World Health Organization, 2010). Complexing CQ with metal containing fragments such as gold(I) triphenylphosphine and gold (III) tetrachloride can enhance its ability to combat CQ-resistant strains of malaria (Navarro et al. 1997; Navarro et al. 2004), as can CQ complexes of Rh and Ru (Sánchez-Delgado et al. 1996). While some of the biological effects of coordinating metals to chloroquine and ts derivatives have been reported, a lack of structure-activity correlation remains.

In the title complex (Fig. 1) gold(I) is coordinated to the nitrogen atom in the quinoline ring as proposed earlier (Navarro et al. 1997). The complex exhibits a nearly linear coordination geometry around gold, with an N—Au—P angle of 176.94 (6)°. The Au—N and Au—P bond distance are 2.070 (2) Å and 2.2338 (7) Å, respectively. These bond distances are similar to those found in thre structure of (triphenylphosphine)gold(I) chloride, with Au—P 2.2313 (4) Å (Borissova et al., 2008), as well as the Au—N and Au—P distances in the structure of the cationic pyridine adduct (triphenylphosphine)gold(I) pyridine tetrafluoroborate, with Au—N 2.073 (3) Å and Au—P 2.2364 (8) Å (Thwaite et al., 2004). The pendant diethylamino group (N4) of the CQ ligand in the title complex was found to be protonated, and the nitrate anions are hydrogen bound to both the N1 amino and N4 ammonium groups of the 1,4-pentanediamine fragment of the CQ.

For related structures, see: Karle & Karle (1988); Oleksyn & Serda (1993); Orlow et al. (2005); Borissova et al. (2008); Thwaite et al. (2004). For background to the metal coordination chemistry of chloroquine, see: Sánchez-Delgado et al. (1996); Navarro et al. (1997, 2004). Widespread use of CQ has led to cross-resistance, limiting the efficacy of CQ-related treatments for malaria, see: World Health Organization (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, with displacement ellipsoids shown at the 50% probability level. H atoms on carbon have been omitted for clarity; primed atoms represent the disordered fraction of the NO3 ion and the diethylammonium group.
{4-[(7-Chloro-4-quinolyl)amino]-N,N- diethylpentanaminium}(triphenylphosphine)gold(I) dinitrate top
Crystal data top
[Au(C18H27ClN3)(C18H15P)](NO3)2Z = 2
Mr = 904.13F(000) = 904
Triclinic, P1Dx = 1.638 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2456 (5) ÅCell parameters from 9914 reflections
b = 13.1914 (6) Åθ = 2.6–28.2°
c = 13.6301 (7) ŵ = 4.18 mm1
α = 85.866 (1)°T = 125 K
β = 88.126 (1)°Plate, colourless
γ = 86.510 (1)°0.34 × 0.14 × 0.05 mm
V = 1833.22 (15) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10116 independent reflections
Radiation source: fine-focus sealed tube8781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1314
Tmin = 0.331, Tmax = 0.818k = 1818
25641 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.224P]
where P = (Fo2 + 2Fc2)/3
10116 reflections(Δ/σ)max = 0.002
535 parametersΔρmax = 0.79 e Å3
1 restraintΔρmin = 0.84 e Å3
Crystal data top
[Au(C18H27ClN3)(C18H15P)](NO3)2γ = 86.510 (1)°
Mr = 904.13V = 1833.22 (15) Å3
Triclinic, P1Z = 2
a = 10.2456 (5) ÅMo Kα radiation
b = 13.1914 (6) ŵ = 4.18 mm1
c = 13.6301 (7) ÅT = 125 K
α = 85.866 (1)°0.34 × 0.14 × 0.05 mm
β = 88.126 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10116 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
8781 reflections with I > 2σ(I)
Tmin = 0.331, Tmax = 0.818Rint = 0.030
25641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.79 e Å3
10116 reflectionsΔρmin = 0.84 e Å3
535 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.665037 (10)0.182061 (8)0.594476 (7)0.02328 (4)
P0.82288 (7)0.11891 (5)0.69465 (5)0.02176 (13)
N10.7853 (8)0.3049 (6)0.0355 (8)0.0249 (19)0.481 (4)
O10.6757 (6)0.2555 (6)0.0027 (5)0.0508 (16)0.481 (4)
O20.8285 (6)0.3795 (4)0.0104 (4)0.0542 (16)0.481 (4)
O30.8277 (5)0.2750 (4)0.1169 (4)0.0433 (13)0.481 (4)
N50.1929 (19)0.3572 (7)0.1579 (14)0.0312 (18)0.481 (4)
H50.21540.34510.22420.037*0.481 (4)
C10.3183 (7)0.4390 (6)0.0986 (5)0.0272 (14)0.481 (4)
H1A0.33220.50340.13160.033*0.481 (4)
H1B0.29420.45520.02860.033*0.481 (4)
C20.4399 (6)0.3793 (6)0.1079 (5)0.0415 (17)0.481 (4)
H2A0.51350.42070.07910.062*0.481 (4)
H2B0.45990.36150.17760.062*0.481 (4)
H2C0.42510.31690.07320.062*0.481 (4)
C30.1635 (9)0.2834 (7)0.1254 (7)0.0293 (18)0.481 (4)
H3A0.25040.25520.12160.035*0.481 (4)
H3B0.12390.24530.18340.035*0.481 (4)
C40.0910 (9)0.2302 (8)0.0440 (7)0.058 (2)0.481 (4)
H4A0.09450.15640.05700.087*0.481 (4)
H4B0.00040.24840.04090.087*0.481 (4)
H4C0.13180.25120.01890.087*0.481 (4)
N1'0.3290 (7)0.3177 (6)0.0098 (5)0.0373 (13)0.519 (4)
O1'0.3781 (6)0.2933 (5)0.0668 (5)0.0708 (18)0.519 (4)
O2'0.3890 (6)0.3670 (4)0.0672 (3)0.0610 (16)0.519 (4)
O3'0.2288 (17)0.3057 (12)0.0391 (12)0.113 (5)0.519 (4)
N5'0.2021 (18)0.3913 (6)0.1539 (13)0.0312 (18)0.519 (4)
H5'0.23750.39870.21680.037*0.519 (4)
C1'0.3049 (9)0.3885 (8)0.0918 (8)0.064 (3)0.519 (4)
H1'A0.35270.32560.10360.076*0.519 (4)
H1'B0.27770.39810.02160.076*0.519 (4)
C2'0.3838 (8)0.4842 (7)0.1296 (7)0.069 (2)0.519 (4)
H2'A0.46910.49220.09870.104*0.519 (4)
H2'B0.33500.54500.11260.104*0.519 (4)
H2'C0.39650.47530.20120.104*0.519 (4)
C3'0.1431 (14)0.2479 (8)0.1467 (8)0.059 (3)0.519 (4)
H3'A0.05710.22900.17600.071*0.519 (4)
H3'B0.20920.19900.16940.071*0.519 (4)
C4'0.1367 (9)0.2780 (6)0.0156 (6)0.0492 (19)0.519 (4)
H4'A0.13840.21520.01850.074*0.519 (4)
H4'B0.05600.31170.00290.074*0.519 (4)
H4'C0.21240.32360.00320.074*0.519 (4)
N20.2745 (2)0.40668 (18)0.39973 (18)0.0290 (5)
O40.2598 (2)0.32863 (15)0.35104 (16)0.0399 (5)
O50.2412 (2)0.40230 (17)0.48672 (16)0.0449 (6)
O60.3220 (2)0.48678 (17)0.35888 (18)0.0484 (6)
N30.5210 (2)0.23408 (16)0.49707 (16)0.0218 (4)
N40.2893 (3)0.38262 (19)0.27767 (19)0.0354 (6)
H40.293 (3)0.362 (2)0.2210 (16)0.042*
C50.0876 (3)0.4451 (3)0.1452 (2)0.0432 (8)
H5A0.04060.44190.08080.052*
H5B0.13370.51310.14730.052*
C60.0088 (3)0.4291 (3)0.2274 (2)0.0407 (8)
H6A0.04400.35740.23210.049*
H6B0.03610.44330.29080.049*
C70.1203 (3)0.4995 (2)0.2076 (2)0.0292 (6)
H7A0.16000.48800.14180.035*
H7B0.08400.57090.20590.035*
C80.2266 (3)0.4855 (2)0.2828 (2)0.0288 (6)
H8A0.18570.49160.34990.035*
C90.3271 (3)0.5659 (2)0.2646 (3)0.0411 (8)
H9A0.39880.55130.31030.062*
H9B0.28540.63330.27490.062*
H9C0.36180.56490.19680.062*
C100.3611 (2)0.3343 (2)0.3491 (2)0.0252 (5)
C110.3767 (2)0.3752 (2)0.43949 (19)0.0239 (5)
H11A0.33250.43810.45360.029*
C120.4565 (3)0.3237 (2)0.50772 (19)0.0244 (5)
H12A0.46660.35450.56770.029*
C130.5037 (2)0.18783 (19)0.41085 (18)0.0206 (5)
C140.5651 (2)0.09074 (19)0.39948 (19)0.0235 (5)
H14A0.61660.05780.45050.028*
C150.5501 (2)0.04404 (19)0.3141 (2)0.0243 (5)
Cl0.63057 (7)0.07417 (5)0.29880 (5)0.03084 (15)
C160.4726 (3)0.0892 (2)0.2383 (2)0.0286 (6)
H16A0.46260.05540.18000.034*
C170.4113 (3)0.1831 (2)0.2497 (2)0.0294 (6)
H17A0.35800.21380.19870.035*
C180.4253 (2)0.2355 (2)0.33543 (19)0.0241 (5)
C190.9009 (3)0.00417 (19)0.64813 (19)0.0238 (5)
C200.8238 (3)0.0623 (2)0.6048 (2)0.0294 (6)
H20A0.73370.04430.59550.035*
C210.8771 (3)0.1545 (2)0.5750 (2)0.0354 (7)
H21A0.82400.19890.54440.042*
C221.0076 (3)0.1817 (2)0.5899 (2)0.0356 (7)
H22A1.04340.24610.57200.043*
C231.0859 (3)0.1158 (2)0.6308 (3)0.0428 (8)
H23A1.17610.13420.63970.051*
C241.0332 (3)0.0222 (2)0.6590 (2)0.0352 (7)
H24A1.08790.02380.68580.042*
C250.9531 (3)0.20251 (19)0.71033 (19)0.0224 (5)
C260.9777 (3)0.2794 (2)0.6378 (2)0.0284 (6)
H26A0.91940.29360.58510.034*
C271.0875 (3)0.3353 (2)0.6425 (2)0.0363 (7)
H27A1.10580.38620.59190.044*
C281.1707 (3)0.3170 (2)0.7209 (2)0.0380 (7)
H28A1.24640.35480.72330.046*
C291.1439 (3)0.2440 (2)0.7953 (2)0.0348 (7)
H29A1.19950.23300.84990.042*
C301.0360 (3)0.1870 (2)0.7902 (2)0.0295 (6)
H30A1.01790.13670.84140.035*
C310.7642 (2)0.0799 (2)0.81795 (19)0.0246 (5)
C320.6619 (3)0.1374 (2)0.8616 (2)0.0294 (6)
H32A0.62270.19550.82630.035*
C330.6179 (3)0.1098 (3)0.9562 (2)0.0417 (8)
H33A0.54840.14900.98580.050*
C340.6748 (3)0.0252 (3)1.0080 (2)0.0452 (8)
H34A0.64560.00731.07350.054*
C350.7737 (3)0.0329 (3)0.9646 (2)0.0466 (9)
H35A0.81140.09160.99990.056*
C360.8185 (3)0.0065 (2)0.8699 (2)0.0350 (7)
H36A0.88640.04720.84030.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02601 (6)0.02376 (5)0.02042 (5)0.00079 (4)0.00528 (4)0.00233 (4)
P0.0256 (3)0.0196 (3)0.0201 (3)0.0005 (3)0.0027 (3)0.0022 (2)
N10.017 (3)0.023 (4)0.038 (5)0.010 (3)0.004 (3)0.020 (3)
O10.039 (3)0.067 (5)0.049 (4)0.010 (3)0.014 (3)0.022 (3)
O20.075 (4)0.049 (3)0.035 (3)0.023 (3)0.007 (3)0.004 (2)
O30.053 (3)0.047 (3)0.029 (3)0.011 (2)0.013 (2)0.004 (2)
N50.036 (3)0.033 (6)0.0265 (19)0.015 (5)0.0003 (17)0.006 (5)
C10.026 (3)0.035 (4)0.021 (3)0.004 (3)0.003 (2)0.005 (3)
C20.028 (3)0.052 (4)0.046 (4)0.013 (3)0.008 (3)0.005 (3)
C30.035 (4)0.027 (5)0.027 (4)0.016 (3)0.002 (3)0.001 (3)
C40.052 (6)0.066 (7)0.057 (6)0.005 (5)0.003 (4)0.012 (5)
N1'0.041 (4)0.040 (3)0.030 (3)0.001 (3)0.009 (3)0.000 (3)
O1'0.065 (4)0.102 (5)0.047 (3)0.013 (3)0.012 (3)0.031 (3)
O2'0.085 (4)0.068 (4)0.033 (3)0.022 (3)0.013 (3)0.004 (2)
O3'0.128 (12)0.129 (11)0.080 (10)0.012 (9)0.019 (8)0.005 (8)
N5'0.036 (3)0.033 (6)0.0265 (19)0.015 (5)0.0003 (17)0.006 (5)
C1'0.046 (5)0.065 (6)0.084 (7)0.005 (5)0.008 (4)0.035 (6)
C2'0.048 (5)0.095 (7)0.064 (6)0.005 (5)0.013 (4)0.004 (5)
C3'0.107 (8)0.036 (6)0.034 (6)0.009 (5)0.008 (5)0.003 (4)
C4'0.063 (5)0.045 (5)0.041 (4)0.003 (4)0.006 (4)0.019 (4)
N20.0287 (12)0.0258 (12)0.0328 (13)0.0032 (10)0.0054 (10)0.0056 (10)
O40.0540 (14)0.0294 (11)0.0370 (12)0.0050 (10)0.0130 (10)0.0117 (9)
O50.0638 (15)0.0386 (12)0.0328 (12)0.0051 (11)0.0117 (11)0.0076 (10)
O60.0619 (16)0.0328 (12)0.0491 (15)0.0070 (11)0.0092 (12)0.0009 (11)
N30.0228 (11)0.0217 (11)0.0211 (11)0.0007 (8)0.0012 (8)0.0028 (8)
N40.0446 (15)0.0291 (13)0.0328 (14)0.0132 (11)0.0171 (12)0.0108 (11)
C50.0322 (16)0.067 (2)0.0310 (17)0.0116 (15)0.0027 (13)0.0044 (15)
C60.0334 (16)0.059 (2)0.0311 (16)0.0192 (15)0.0072 (13)0.0057 (15)
C70.0296 (14)0.0244 (14)0.0326 (15)0.0005 (11)0.0038 (12)0.0040 (11)
C80.0270 (14)0.0220 (13)0.0377 (16)0.0044 (11)0.0064 (12)0.0065 (11)
C90.0358 (17)0.0388 (18)0.051 (2)0.0078 (14)0.0045 (15)0.0112 (15)
C100.0225 (13)0.0260 (13)0.0276 (14)0.0022 (10)0.0064 (11)0.0060 (11)
C110.0236 (13)0.0218 (12)0.0271 (14)0.0013 (10)0.0017 (10)0.0079 (10)
C120.0272 (13)0.0250 (13)0.0220 (13)0.0041 (10)0.0009 (10)0.0056 (10)
C130.0198 (12)0.0216 (12)0.0204 (12)0.0013 (9)0.0002 (9)0.0016 (10)
C140.0217 (12)0.0242 (13)0.0241 (13)0.0018 (10)0.0008 (10)0.0013 (10)
C150.0213 (12)0.0227 (13)0.0291 (14)0.0019 (10)0.0013 (10)0.0061 (11)
Cl0.0286 (3)0.0248 (3)0.0391 (4)0.0053 (3)0.0004 (3)0.0085 (3)
C160.0318 (14)0.0289 (14)0.0264 (14)0.0016 (11)0.0039 (11)0.0110 (11)
C170.0323 (14)0.0305 (15)0.0256 (14)0.0058 (12)0.0100 (11)0.0063 (11)
C180.0236 (13)0.0246 (13)0.0247 (13)0.0019 (10)0.0053 (10)0.0066 (10)
C190.0305 (14)0.0215 (12)0.0190 (12)0.0017 (10)0.0046 (10)0.0005 (10)
C200.0379 (16)0.0239 (13)0.0263 (14)0.0007 (12)0.0026 (12)0.0020 (11)
C210.0530 (19)0.0236 (14)0.0304 (16)0.0055 (13)0.0011 (14)0.0058 (12)
C220.0485 (18)0.0225 (14)0.0348 (17)0.0008 (13)0.0175 (14)0.0048 (12)
C230.0317 (16)0.0336 (17)0.062 (2)0.0004 (13)0.0200 (15)0.0089 (15)
C240.0295 (15)0.0284 (15)0.0488 (19)0.0063 (12)0.0112 (13)0.0113 (13)
C250.0253 (13)0.0210 (12)0.0213 (13)0.0001 (10)0.0001 (10)0.0046 (10)
C260.0330 (15)0.0281 (14)0.0243 (14)0.0010 (11)0.0017 (11)0.0039 (11)
C270.0391 (17)0.0326 (16)0.0377 (17)0.0075 (13)0.0088 (14)0.0051 (13)
C280.0296 (15)0.0389 (17)0.0482 (19)0.0058 (13)0.0041 (14)0.0204 (15)
C290.0290 (15)0.0386 (17)0.0389 (17)0.0035 (13)0.0087 (13)0.0187 (14)
C300.0359 (15)0.0286 (14)0.0243 (14)0.0030 (12)0.0037 (12)0.0069 (11)
C310.0235 (13)0.0289 (14)0.0219 (13)0.0018 (10)0.0021 (10)0.0048 (11)
C320.0295 (14)0.0279 (14)0.0315 (15)0.0012 (11)0.0007 (12)0.0068 (12)
C330.0378 (17)0.0485 (19)0.0396 (18)0.0014 (15)0.0138 (14)0.0165 (15)
C340.0420 (19)0.067 (2)0.0250 (16)0.0028 (17)0.0085 (14)0.0003 (15)
C350.0392 (18)0.061 (2)0.0348 (18)0.0052 (16)0.0036 (14)0.0191 (16)
C360.0309 (15)0.0408 (17)0.0303 (16)0.0082 (13)0.0044 (12)0.0061 (13)
Geometric parameters (Å, º) top
Au—N32.070 (2)C7—C81.513 (4)
Au—P2.2338 (7)C7—H7A0.9900
P—C251.809 (3)C7—H7B0.9900
P—C191.814 (3)C8—C91.526 (4)
P—C311.816 (3)C8—H8A1.0000
N1—O21.197 (12)C9—H9A0.9800
N1—O31.226 (12)C9—H9B0.9800
N1—O11.343 (11)C9—H9C0.9800
N5—C31.119 (17)C10—C111.398 (4)
N5—C51.628 (16)C10—C181.445 (3)
N5—C11.801 (18)C11—C121.373 (4)
N5—H50.9300C11—H11A0.9500
C1—C21.511 (10)C12—H12A0.9500
C1—H1A0.9900C13—C141.409 (3)
C1—H1B0.9900C13—C181.413 (3)
C2—H2A0.9800C14—C151.373 (4)
C2—H2B0.9800C14—H14A0.9500
C2—H2C0.9800C15—C161.400 (4)
C3—C41.507 (14)C15—Cl1.742 (3)
C3—H3A0.9900C16—C171.371 (4)
C3—H3B0.9900C16—H16A0.9500
C4—H4A0.9800C17—C181.415 (4)
C4—H4B0.9800C17—H17A0.9500
C4—H4C0.9800C19—C241.388 (4)
N1'—O3'1.105 (16)C19—C201.389 (4)
N1'—O1'1.201 (9)C20—C211.385 (4)
N1'—O2'1.251 (8)C20—H20A0.9500
N5'—C1'1.38 (2)C21—C221.381 (4)
N5'—C51.405 (17)C21—H21A0.9500
N5'—C3'1.959 (14)C22—C231.377 (4)
N5'—H5'0.9300C22—H22A0.9500
C1'—C2'1.567 (12)C23—C241.392 (4)
C1'—H1'A0.9900C23—H23A0.9500
C1'—H1'B0.9900C24—H24A0.9500
C2'—H2'A0.9800C25—C261.393 (4)
C2'—H2'B0.9800C25—C301.398 (4)
C2'—H2'C0.9800C26—C271.388 (4)
C3'—C4'1.803 (14)C26—H26A0.9500
C3'—H3'A0.9900C27—C281.386 (5)
C3'—H3'B0.9900C27—H27A0.9500
C4'—H4'A0.9800C28—C291.380 (5)
C4'—H4'B0.9800C28—H28A0.9500
C4'—H4'C0.9800C29—C301.380 (4)
N2—O61.238 (3)C29—H29A0.9500
N2—O51.241 (3)C30—H30A0.9500
N2—O41.264 (3)C31—C361.393 (4)
N3—C121.334 (3)C31—C321.399 (4)
N3—C131.384 (3)C32—C331.384 (4)
N4—C101.340 (3)C32—H32A0.9500
N4—C81.471 (3)C33—C341.385 (5)
N4—H40.839 (18)C33—H33A0.9500
C5—C61.513 (4)C34—C351.377 (5)
C5—H5A0.9900C34—H34A0.9500
C5—H5B0.9900C35—C361.383 (4)
C6—C71.521 (4)C35—H35A0.9500
C6—H6A0.9900C36—H36A0.9500
C6—H6B0.9900
N3—Au—P176.94 (6)N4—C8—C9110.7 (2)
C25—P—C19105.97 (12)C7—C8—C9111.3 (2)
C25—P—C31105.86 (12)N4—C8—H8A108.8
C19—P—C31104.78 (12)C7—C8—H8A108.8
C25—P—Au115.47 (9)C9—C8—H8A108.8
C19—P—Au110.06 (9)C8—C9—H9A109.5
C31—P—Au113.88 (9)C8—C9—H9B109.5
O2—N1—O3123.8 (7)H9A—C9—H9B109.5
O2—N1—O1119.5 (9)C8—C9—H9C109.5
O3—N1—O1116.3 (9)H9A—C9—H9C109.5
C3—N5—C5116.5 (15)H9B—C9—H9C109.5
C3—N5—C1118.2 (15)N4—C10—C11122.5 (2)
C5—N5—C192.3 (6)N4—C10—C18120.5 (2)
C3—N5—H5109.6C11—C10—C18116.9 (2)
C5—N5—H5109.6C12—C11—C10119.5 (2)
C1—N5—H5109.6C12—C11—H11A120.3
C2—C1—N5105.1 (7)C10—C11—H11A120.3
C2—C1—H1A110.7N3—C12—C11125.6 (2)
N5—C1—H1A110.7N3—C12—H12A117.2
C2—C1—H1B110.7C11—C12—H12A117.2
N5—C1—H1B110.7N3—C13—C14118.6 (2)
H1A—C1—H1B108.8N3—C13—C18121.4 (2)
N5—C3—C4147.4 (12)C14—C13—C18120.0 (2)
N5—C3—H3A99.9C15—C14—C13119.5 (2)
C4—C3—H3A99.9C15—C14—H14A120.3
N5—C3—H3B99.9C13—C14—H14A120.3
C4—C3—H3B99.9C14—C15—C16121.8 (2)
H3A—C3—H3B104.2C14—C15—Cl119.3 (2)
O3'—N1'—O1'128.3 (11)C16—C15—Cl118.9 (2)
O3'—N1'—O2'110.2 (11)C17—C16—C15118.8 (2)
O1'—N1'—O2'121.5 (7)C17—C16—H16A120.6
C1'—N5'—C5131.5 (12)C15—C16—H16A120.6
C1'—N5'—C3'95.6 (9)C16—C17—C18121.8 (3)
C5—N5'—C3'105.3 (10)C16—C17—H17A119.1
C1'—N5'—H5'107.3C18—C17—H17A119.1
C5—N5'—H5'107.3C13—C18—C17118.1 (2)
C3'—N5'—H5'107.3C13—C18—C10119.2 (2)
N5'—C1'—C2'95.8 (8)C17—C18—C10122.6 (2)
N5'—C1'—H1'A112.6C24—C19—C20118.9 (2)
C2'—C1'—H1'A112.6C24—C19—P122.4 (2)
N5'—C1'—H1'B112.6C20—C19—P118.6 (2)
C2'—C1'—H1'B112.6C21—C20—C19120.7 (3)
H1'A—C1'—H1'B110.1C21—C20—H20A119.7
C1'—C2'—H2'A109.5C19—C20—H20A119.7
C1'—C2'—H2'B109.5C22—C21—C20119.8 (3)
H2'A—C2'—H2'B109.5C22—C21—H21A120.1
C1'—C2'—H2'C109.5C20—C21—H21A120.1
H2'A—C2'—H2'C109.5C23—C22—C21120.2 (3)
H2'B—C2'—H2'C109.5C23—C22—H22A119.9
C4'—C3'—N5'84.7 (7)C21—C22—H22A119.9
C4'—C3'—H3'A114.5C22—C23—C24120.0 (3)
N5'—C3'—H3'A114.5C22—C23—H23A120.0
C4'—C3'—H3'B114.5C24—C23—H23A120.0
N5'—C3'—H3'B114.5C19—C24—C23120.3 (3)
H3'A—C3'—H3'B111.6C19—C24—H24A119.9
C3'—C4'—H4'A109.5C23—C24—H24A119.9
C3'—C4'—H4'B109.5C26—C25—C30119.0 (2)
H4'A—C4'—H4'B109.5C26—C25—P119.4 (2)
C3'—C4'—H4'C109.5C30—C25—P121.4 (2)
H4'A—C4'—H4'C109.5C27—C26—C25119.9 (3)
H4'B—C4'—H4'C109.5C27—C26—H26A120.1
O6—N2—O5121.2 (2)C25—C26—H26A120.1
O6—N2—O4118.8 (3)C28—C27—C26120.3 (3)
O5—N2—O4120.0 (2)C28—C27—H27A119.9
C12—N3—C13117.2 (2)C26—C27—H27A119.9
C12—N3—Au119.89 (17)C29—C28—C27120.2 (3)
C13—N3—Au121.94 (16)C29—C28—H28A119.9
C10—N4—C8124.3 (2)C27—C28—H28A119.9
C10—N4—H4120 (2)C30—C29—C28119.8 (3)
C8—N4—H4114 (2)C30—C29—H29A120.1
N5'—C5—C6118.1 (7)C28—C29—H29A120.1
C6—C5—N5109.3 (7)C29—C30—C25120.7 (3)
N5'—C5—H5A114.5C29—C30—H30A119.7
C6—C5—H5A109.8C25—C30—H30A119.7
N5—C5—H5A109.8C36—C31—C32119.2 (3)
N5'—C5—H5B95.0C36—C31—P121.4 (2)
C6—C5—H5B109.8C32—C31—P119.4 (2)
N5—C5—H5B109.8C33—C32—C31120.0 (3)
H5A—C5—H5B108.3C33—C32—H32A120.0
C5—C6—C7109.9 (3)C31—C32—H32A120.0
C5—C6—H6A109.7C32—C33—C34120.2 (3)
C7—C6—H6A109.7C32—C33—H33A119.9
C5—C6—H6B109.7C34—C33—H33A119.9
C7—C6—H6B109.7C35—C34—C33120.0 (3)
H6A—C6—H6B108.2C35—C34—H34A120.0
C8—C7—C6114.3 (2)C33—C34—H34A120.0
C8—C7—H7A108.7C34—C35—C36120.5 (3)
C6—C7—H7A108.7C34—C35—H35A119.8
C8—C7—H7B108.7C36—C35—H35A119.8
C6—C7—H7B108.7C35—C36—C31120.0 (3)
H7A—C7—H7B107.6C35—C36—H36A120.0
N4—C8—C7108.4 (2)C31—C36—H36A120.0
C3—N5—C1—C263.6 (16)N4—C10—C18—C13178.0 (3)
C5—N5—C1—C2174.5 (7)C11—C10—C18—C132.7 (4)
C5—N5—C3—C434 (3)N4—C10—C18—C173.0 (4)
C1—N5—C3—C474 (3)C11—C10—C18—C17176.3 (3)
C5—N5'—C1'—C2'85.5 (15)C25—P—C19—C2420.4 (3)
C3'—N5'—C1'—C2'158.3 (8)C31—P—C19—C2491.3 (2)
C1'—N5'—C3'—C4'54.7 (10)Au—P—C19—C24145.9 (2)
C5—N5'—C3'—C4'81.1 (10)C25—P—C19—C20163.2 (2)
C1'—N5'—C5—C6178.7 (11)C31—P—C19—C2085.1 (2)
C3'—N5'—C5—C666.6 (11)Au—P—C19—C2037.7 (2)
C1'—N5'—C5—N5122 (6)C24—C19—C20—C211.5 (4)
C3'—N5'—C5—N510 (5)P—C19—C20—C21175.1 (2)
C3—N5—C5—N5'146 (7)C19—C20—C21—C221.2 (4)
C1—N5—C5—N5'23 (5)C20—C21—C22—C232.6 (5)
C3—N5—C5—C685.2 (15)C21—C22—C23—C241.3 (5)
C1—N5—C5—C6151.6 (6)C20—C19—C24—C232.8 (4)
N5'—C5—C6—C7175.9 (7)P—C19—C24—C23173.6 (2)
N5—C5—C6—C7170.8 (7)C22—C23—C24—C191.4 (5)
C5—C6—C7—C8176.8 (3)C19—P—C25—C2698.4 (2)
C10—N4—C8—C7161.2 (3)C31—P—C25—C26150.7 (2)
C10—N4—C8—C976.5 (4)Au—P—C25—C2623.7 (2)
C6—C7—C8—N464.2 (3)C19—P—C25—C3076.8 (2)
C6—C7—C8—C9173.9 (3)C31—P—C25—C3034.1 (2)
C8—N4—C10—C114.3 (5)Au—P—C25—C30161.09 (19)
C8—N4—C10—C18176.5 (3)C30—C25—C26—C273.7 (4)
N4—C10—C11—C12177.1 (3)P—C25—C26—C27171.6 (2)
C18—C10—C11—C123.6 (4)C25—C26—C27—C282.0 (4)
C13—N3—C12—C111.6 (4)C26—C27—C28—C290.9 (5)
Au—N3—C12—C11167.6 (2)C27—C28—C29—C301.9 (4)
C10—C11—C12—N31.6 (4)C28—C29—C30—C250.2 (4)
C12—N3—C13—C14176.8 (2)C26—C25—C30—C292.7 (4)
Au—N3—C13—C1414.3 (3)P—C25—C30—C29172.5 (2)
C12—N3—C13—C182.6 (4)C25—P—C31—C3689.6 (3)
Au—N3—C13—C18166.36 (19)C19—P—C31—C3622.2 (3)
N3—C13—C14—C15179.4 (2)Au—P—C31—C36142.5 (2)
C18—C13—C14—C151.2 (4)C25—P—C31—C3290.7 (2)
C13—C14—C15—C161.5 (4)C19—P—C31—C32157.5 (2)
C13—C14—C15—Cl177.96 (19)Au—P—C31—C3237.2 (2)
C14—C15—C16—C170.7 (4)C36—C31—C32—C331.5 (4)
Cl—C15—C16—C17178.8 (2)P—C31—C32—C33178.7 (2)
C15—C16—C17—C180.5 (4)C31—C32—C33—C340.0 (5)
N3—C13—C18—C17179.5 (2)C32—C33—C34—C351.3 (5)
C14—C13—C18—C170.1 (4)C33—C34—C35—C361.1 (6)
N3—C13—C18—C100.4 (4)C34—C35—C36—C310.4 (5)
C14—C13—C18—C10178.9 (2)C32—C31—C36—C351.7 (5)
C16—C17—C18—C130.8 (4)P—C31—C36—C35178.5 (3)
C16—C17—C18—C10179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O40.931.772.70 (2)177
N5—H5···O40.932.002.81 (2)144
N4—H4···O20.84 (2)2.28 (2)3.030 (6)149 (3)
N4—H4···O3i0.84 (2)2.32 (3)3.013 (5)140 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Au(C18H27ClN3)(C18H15P)](NO3)2
Mr904.13
Crystal system, space groupTriclinic, P1
Temperature (K)125
a, b, c (Å)10.2456 (5), 13.1914 (6), 13.6301 (7)
α, β, γ (°)85.866 (1), 88.126 (1), 86.510 (1)
V3)1833.22 (15)
Z2
Radiation typeMo Kα
µ (mm1)4.18
Crystal size (mm)0.34 × 0.14 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.331, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
25641, 10116, 8781
Rint0.030
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 1.02
No. of reflections10116
No. of parameters535
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.84

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O40.931.772.70 (2)177
N5'—H5'···O40.932.002.81 (2)144
N4—H4···O2'0.84 (2)2.28 (2)3.030 (6)149 (3)
N4—H4···O3i0.84 (2)2.32 (3)3.013 (5)140 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBorissova, A. O., Korlyukov, A. A., Antipin, M. Y. & Lyssenko, K. A. (2008). J. Phys. Chem. A, 112, 11519–11522.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarle, J. M. & Karle, I. L. (1988). Acta Cryst. C44, 1605–1608.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNavarro, M., Sánchez-Delgado, R. A. & Pérez, H. (1997). J. Med. Chem. 40, 1937–1939.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNavarro, M., Vásquez, F., Sánchez-Delgado, R. A., Pérez, H., Sinou, V. & Schrével, J. (2004). J. Med. Chem. 47, 5204–5209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOleksyn, B. J. & Serda, P. (1993). Acta Cryst. B49, 530–534.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOrlow, A., Kalinowska-Tluscik, J. & Oleksyn, B. J. (2005). Acta Cryst. A61, C277–C278.  CrossRef IUCr Journals Google Scholar
First citationSánchez-Delgado, R. A., Navarro, M., Pérez, H. & Urbino, J. A. (1996). J. Med. Chem. 39, 1095–1099.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThwaite, S. E., Schier, A. & Schmidbaur, H. (2004). Inorg. Chim. Acta, 357, 1549–1557.  Web of Science CSD CrossRef CAS Google Scholar
First citationWorld Health Organization (2010). Guidelines for the Treatment of Malaria, 2nd ed. Switzerland: World Health Organization.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds