metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[1-(benzyl­imino)­eth­yl]phenolato}palladium(II)

aDepartment of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: wannazihah@salam.uitm.edu.my

(Received 26 July 2010; accepted 5 August 2010; online 18 August 2010)

In the title compound, [Pd(C15H14NO)2], the Pd atom lies on an inversion center and is coordinated by two ligand mol­ecules through the O and N atoms in a bidentate manner, forming a slightly distorted square-planar geometry. The dihedral angle between the two benzene rings in the ligand is 76.53 (19)°. The mol­ecular packing is stablized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For the catalytic activity of palladium(II)–Schiff base complexes, see: Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Lai et al. (2005[Lai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron, 61, 9484-9489.]) and for their anti­tumor activity, see: Garoufis et al. (2008[Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2008). Coord. Chem. Rev. 253, 1384-1397.]). For related structures, see: Adrian et al. (2008[Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261-1266.]); Wan Nazihah Wan Ibrahim et al. (2008[Wan Nazihah Wan Ibrahim, Shamsuddin, M., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m909-m910.]); Chen & Xia (2009[Chen, S.-Z. & Xia, D.-G. (2009). Acta Cryst. E65, m923.]). For bond-length data, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C15H14NO)2]

  • Mr = 554.94

  • Monoclinic, P 21 /n

  • a = 11.188 (2) Å

  • b = 9.4460 (17) Å

  • c = 11.984 (2) Å

  • β = 110.558 (4)°

  • V = 1185.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.908

  • 6420 measured reflections

  • 2177 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.109

  • S = 1.18

  • 2177 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C1–C6 and C10–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.97 2.18 2.862 (4) 127
C8—H8BCg4ii 0.96 2.57 3.523 (5) 172
C13—H13ACg3iii 0.93 2.87 3.626 (5) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The palladium- Schiff bases complexes have found various applications expecially as catalyst (Gupta & Sutar, 2008; Lai et al., 2005) and antitumors activity (Garoufis et al., 2008). The title compound is analogous to the previously reported complex, {2,2'-[(2,2-dimethylpropane-1,3-diyl)-bis (nitrilomethylidyne)]diphenolato}-palladium(II) ethanol hemisolvate (Wan Nazihah Wan Ibrahim et al., 2008) in terms of the geometry around the central palladium atom.

In the title molecule (Fig. 1), the palladium atom lies on an inversion center and is coordinated to two ligand molecules through the oxygen and nitrogen atoms in a bidentate manner to form a perfect square planar geometry. The bond distances and bond angles in the title complex are normal (Allen et al., 2002). The Pd1—O and Pd1—N bond lengths of 1.981 (2) and 2.039 (2)Å, respectively, in a square planar geometry are typical of square planar Pd(II) of Schiff bases (Adrian et al., 2008). The dihedral angle between the benzene rings is 76.5 (2)°. The molecule is stabilized by C—H..π (C8—H8B···Cg3, C8—H8C···Cg4 and C13H-13 A···Cg3) interactions (Table 1).

Related literature top

For the catalytic activity of palladium(II)–Schiff base complexes, see: Gupta & Sutar (2008); Lai et al. (2005) and for their antitumor activity, see: Garoufis et al. (2008). For related structures, see: Adrian et al. (2008); Wan Nazihah Wan Ibrahim et al. (2008); Chen & Xia (2009). For bond-length data, see: Allen et al. (2002).

Experimental top

The ligand, 2-hydroxyacetophenonebenzylimine, (1.1271 g, 5 mmol) was dissolved in hot ethanol (20 ml) in a round-bottomed flask. Palladium(II) acetate (0.5618 g, 2.5 mmol) was dissolved separately in hot ethanol (40 ml) and added into the flask containing the ligand solution. The mixture was stirred and refluxed for 5 h upon which green precipitate was formed. It was isolated by gravity filtration, washed with cold ethanol and air dried at room temperature. The solid product was recrystallized from chloroform yielding yellow crystals. Yield 87.80%; m.p. 529–530 K.

Refinement top

The H atoms were positioned geometrically with C—H = 0.97, 96 and 0.93 Å for methyl, methylene and aromatic groups, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5(methyl) or 1.2(methylene and aromatic) × Ueq(C). The highest peak and deepest hole are located at 0.90 Å from Pd1 atom.

Structure description top

The palladium- Schiff bases complexes have found various applications expecially as catalyst (Gupta & Sutar, 2008; Lai et al., 2005) and antitumors activity (Garoufis et al., 2008). The title compound is analogous to the previously reported complex, {2,2'-[(2,2-dimethylpropane-1,3-diyl)-bis (nitrilomethylidyne)]diphenolato}-palladium(II) ethanol hemisolvate (Wan Nazihah Wan Ibrahim et al., 2008) in terms of the geometry around the central palladium atom.

In the title molecule (Fig. 1), the palladium atom lies on an inversion center and is coordinated to two ligand molecules through the oxygen and nitrogen atoms in a bidentate manner to form a perfect square planar geometry. The bond distances and bond angles in the title complex are normal (Allen et al., 2002). The Pd1—O and Pd1—N bond lengths of 1.981 (2) and 2.039 (2)Å, respectively, in a square planar geometry are typical of square planar Pd(II) of Schiff bases (Adrian et al., 2008). The dihedral angle between the benzene rings is 76.5 (2)°. The molecule is stabilized by C—H..π (C8—H8B···Cg3, C8—H8C···Cg4 and C13H-13 A···Cg3) interactions (Table 1).

For the catalytic activity of palladium(II)–Schiff base complexes, see: Gupta & Sutar (2008); Lai et al. (2005) and for their antitumor activity, see: Garoufis et al. (2008). For related structures, see: Adrian et al. (2008); Wan Nazihah Wan Ibrahim et al. (2008); Chen & Xia (2009). For bond-length data, see: Allen et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsods drawn at the 50% probability level.
Bis{2-[1-(benzylimino)ethyl]phenolato}palladium(II) top
Crystal data top
[Pd(C15H14NO)2]F(000) = 568
Mr = 554.94Dx = 1.554 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4170 reflections
a = 11.188 (2) Åθ = 2.1–25.5°
b = 9.4460 (17) ŵ = 0.81 mm1
c = 11.984 (2) ÅT = 298 K
β = 110.558 (4)°Block, yellow
V = 1185.8 (4) Å30.28 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2177 independent reflections
Radiation source: fine-focus sealed tube1939 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.038
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.1°
ω scanh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1111
Tmin = 0.804, Tmax = 0.908l = 1411
6420 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.7043P]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Pd(C15H14NO)2]V = 1185.8 (4) Å3
Mr = 554.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.188 (2) ŵ = 0.81 mm1
b = 9.4460 (17) ÅT = 298 K
c = 11.984 (2) Å0.28 × 0.20 × 0.12 mm
β = 110.558 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2177 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1939 reflections with I > 2/s(I)
Tmin = 0.804, Tmax = 0.908Rint = 0.038
6420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.18Δρmax = 0.88 e Å3
2177 reflectionsΔρmin = 0.98 e Å3
161 parameters
Special details top

Experimental. Analytical calculation for C30H28N2O2Pd: C,64.93; H,5.09; N,5.05. Found: C,64.58; H,4.97; N,4.94. IR (cm-1): v(C=N) 1586, v(C—O) 1323, v(C—H) 2977, v(C—N) 1355, v(Pd—O) 695, v(Pd—N) 476.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.00000.02879 (16)
O10.4462 (2)0.5912 (3)0.1236 (2)0.0409 (6)
N10.6541 (2)0.6317 (3)0.0459 (2)0.0323 (6)
C10.5319 (3)0.6226 (3)0.2285 (3)0.0335 (7)
C20.4944 (3)0.6076 (4)0.3284 (3)0.0422 (8)
H2A0.41280.57480.31780.051*
C30.5765 (4)0.6406 (4)0.4419 (3)0.0468 (9)
H3A0.55030.62910.50690.056*
C40.6971 (4)0.6906 (4)0.4583 (4)0.0498 (10)
H4A0.75290.71160.53460.060*
C50.7346 (3)0.7095 (4)0.3632 (4)0.0428 (9)
H5A0.81560.74580.37600.051*
C60.6551 (3)0.6758 (3)0.2454 (3)0.0326 (7)
C70.7007 (3)0.6991 (3)0.1464 (3)0.0335 (7)
C80.8047 (4)0.8088 (4)0.1658 (4)0.0437 (9)
H8A0.79610.85290.09120.066*
H8B0.88670.76380.19770.066*
H8C0.79740.87930.22080.066*
C90.7070 (3)0.6577 (3)0.0483 (3)0.0347 (7)
H9A0.69930.57170.09450.042*
H9B0.79720.67900.01140.042*
C100.6432 (3)0.7774 (3)0.1320 (3)0.0321 (7)
C110.5685 (3)0.8786 (4)0.1050 (3)0.0423 (8)
H11A0.55410.87370.03330.051*
C120.5149 (5)0.9877 (4)0.1846 (5)0.0554 (12)
H12A0.46461.05530.16570.066*
C130.5354 (6)0.9965 (4)0.2906 (5)0.0569 (13)
H13A0.49981.07010.34320.068*
C140.6090 (4)0.8957 (4)0.3186 (4)0.0531 (10)
H14A0.62310.90070.39050.064*
C150.6619 (3)0.7873 (4)0.2398 (3)0.0438 (9)
H15A0.71120.71930.25950.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0270 (2)0.0261 (2)0.0302 (3)0.00145 (11)0.00621 (17)0.00023 (12)
O10.0325 (12)0.0481 (14)0.0402 (14)0.0030 (10)0.0104 (11)0.0108 (11)
N10.0297 (13)0.0273 (13)0.0396 (16)0.0003 (11)0.0116 (12)0.0024 (12)
C10.0351 (16)0.0236 (15)0.039 (2)0.0035 (13)0.0098 (15)0.0020 (14)
C20.0437 (19)0.0346 (18)0.053 (2)0.0016 (15)0.0227 (18)0.0025 (16)
C30.057 (2)0.049 (2)0.036 (2)0.0019 (18)0.0177 (18)0.0037 (17)
C40.053 (2)0.054 (2)0.034 (2)0.0033 (18)0.0051 (18)0.0084 (18)
C50.0366 (18)0.041 (2)0.046 (2)0.0004 (15)0.0083 (17)0.0055 (17)
C60.0357 (16)0.0268 (16)0.0317 (18)0.0023 (13)0.0074 (14)0.0005 (13)
C70.0301 (16)0.0257 (15)0.038 (2)0.0009 (13)0.0041 (14)0.0009 (14)
C80.0424 (19)0.0353 (19)0.050 (2)0.0090 (15)0.0115 (18)0.0001 (17)
C90.0300 (16)0.0345 (17)0.040 (2)0.0021 (13)0.0133 (15)0.0002 (14)
C100.0320 (16)0.0330 (16)0.0305 (18)0.0065 (13)0.0099 (14)0.0012 (14)
C110.053 (2)0.043 (2)0.0287 (19)0.0076 (16)0.0111 (16)0.0007 (16)
C120.074 (3)0.040 (2)0.052 (3)0.0167 (18)0.021 (3)0.0026 (17)
C130.076 (4)0.038 (2)0.051 (3)0.0001 (17)0.016 (3)0.0121 (16)
C140.072 (3)0.051 (2)0.043 (2)0.010 (2)0.029 (2)0.0042 (18)
C150.050 (2)0.043 (2)0.046 (2)0.0010 (16)0.0268 (18)0.0005 (17)
Geometric parameters (Å, º) top
Pd1—O11.981 (2)C7—C81.514 (4)
Pd1—O1i1.981 (2)C8—H8A0.9600
Pd1—N1i2.039 (3)C8—H8B0.9600
Pd1—N12.039 (3)C8—H8C0.9600
O1—C11.319 (4)C9—C101.514 (5)
N1—C71.299 (4)C9—H9A0.9700
N1—C91.468 (4)C9—H9B0.9700
C1—C21.407 (5)C10—C111.380 (5)
C1—C61.414 (4)C10—C151.382 (5)
C2—C31.384 (5)C11—C121.389 (6)
C2—H2A0.9300C11—H11A0.9300
C3—C41.377 (5)C12—C131.371 (8)
C3—H3A0.9300C12—H12A0.9300
C4—C51.357 (6)C13—C141.375 (6)
C4—H4A0.9300C13—H13A0.9300
C5—C61.415 (5)C14—C151.377 (6)
C5—H5A0.9300C14—H14A0.9300
C6—C71.463 (5)C15—H15A0.9300
O1—Pd1—O1i180.00 (8)C7—C8—H8A109.5
O1—Pd1—N1i90.97 (10)C7—C8—H8B109.5
O1i—Pd1—N1i89.03 (10)H8A—C8—H8B109.5
O1—Pd1—N189.03 (10)C7—C8—H8C109.5
O1i—Pd1—N190.97 (10)H8A—C8—H8C109.5
N1i—Pd1—N1180.00 (11)H8B—C8—H8C109.5
C1—O1—Pd1120.0 (2)N1—C9—C10114.3 (3)
C7—N1—C9119.5 (3)N1—C9—H9A108.7
C7—N1—Pd1125.1 (2)C10—C9—H9A108.7
C9—N1—Pd1115.2 (2)N1—C9—H9B108.7
O1—C1—C2117.0 (3)C10—C9—H9B108.7
O1—C1—C6124.2 (3)H9A—C9—H9B107.6
C2—C1—C6118.7 (3)C11—C10—C15118.3 (3)
C3—C2—C1121.4 (3)C11—C10—C9123.0 (3)
C3—C2—H2A119.3C15—C10—C9118.6 (3)
C1—C2—H2A119.3C10—C11—C12120.3 (4)
C4—C3—C2119.7 (3)C10—C11—H11A119.9
C4—C3—H3A120.1C12—C11—H11A119.9
C2—C3—H3A120.1C13—C12—C11120.5 (4)
C5—C4—C3120.1 (4)C13—C12—H12A119.7
C5—C4—H4A119.9C11—C12—H12A119.7
C3—C4—H4A119.9C12—C13—C14119.6 (4)
C4—C5—C6122.4 (4)C12—C13—H13A120.2
C4—C5—H5A118.8C14—C13—H13A120.2
C6—C5—H5A118.8C13—C14—C15119.8 (4)
C1—C6—C5117.6 (3)C13—C14—H14A120.1
C1—C6—C7122.5 (3)C15—C14—H14A120.1
C5—C6—C7119.9 (3)C14—C15—C10121.4 (3)
N1—C7—C6122.5 (3)C14—C15—H15A119.3
N1—C7—C8120.9 (3)C10—C15—H15A119.3
C6—C7—C8116.5 (3)
O1i—Pd1—O1—C1151 (100)C4—C5—C6—C7179.6 (3)
N1i—Pd1—O1—C1138.5 (2)C9—N1—C7—C6178.3 (3)
N1—Pd1—O1—C141.5 (2)Pd1—N1—C7—C66.9 (4)
O1—Pd1—N1—C720.0 (3)C9—N1—C7—C82.7 (4)
O1i—Pd1—N1—C7160.0 (3)Pd1—N1—C7—C8172.1 (2)
N1i—Pd1—N1—C7156 (100)C1—C6—C7—N124.1 (5)
O1—Pd1—N1—C9155.0 (2)C5—C6—C7—N1157.2 (3)
O1i—Pd1—N1—C925.0 (2)C1—C6—C7—C8155.0 (3)
N1i—Pd1—N1—C919 (100)C5—C6—C7—C823.7 (5)
Pd1—O1—C1—C2144.1 (2)C7—N1—C9—C1089.1 (3)
Pd1—O1—C1—C638.9 (4)Pd1—N1—C9—C1086.1 (3)
O1—C1—C2—C3178.7 (3)N1—C9—C10—C1117.5 (4)
C6—C1—C2—C31.5 (5)N1—C9—C10—C15163.5 (3)
C1—C2—C3—C40.7 (6)C15—C10—C11—C120.5 (6)
C2—C3—C4—C51.0 (6)C9—C10—C11—C12178.6 (4)
C3—C4—C5—C61.8 (6)C10—C11—C12—C130.1 (7)
O1—C1—C6—C5177.7 (3)C11—C12—C13—C140.5 (8)
C2—C1—C6—C50.7 (4)C12—C13—C14—C150.3 (7)
O1—C1—C6—C71.0 (5)C13—C14—C15—C100.3 (6)
C2—C1—C6—C7178.0 (3)C11—C10—C15—C140.7 (5)
C4—C5—C6—C10.9 (5)C9—C10—C15—C14178.4 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the ???? and ???? rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.182.862 (4)127
C11—H11A···N10.932.582.900 (5)101
C8—H8B···Cg4ii0.962.573.523 (5)172
C13—H13A···Cg3iii0.932.873.626 (5)139
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Pd(C15H14NO)2]
Mr554.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.188 (2), 9.4460 (17), 11.984 (2)
β (°) 110.558 (4)
V3)1185.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.28 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.804, 0.908
No. of measured, independent and
observed [I > 2/s(I)] reflections
6420, 2177, 1939
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.109, 1.18
No. of reflections2177
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.98

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the ???? and ???? rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.182.862 (4)127
C8—H8B···Cg4ii0.962.573.523 (5)172
C13—H13A···Cg3iii0.932.873.626 (5)139
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+2, z.
 

Acknowledgements

Thanks are gratefully extended to The Ministry of Higher Education of Malaysia, Universiti Teknologi MARA and Universiti Kebangsaan Malaysia for the research grants Nos. 600-RMI/ST/FRGS 5/3/Fst(7/2009) and UKM-OUP-BTT-28/2007.

References

First citationAdrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-Z. & Xia, D.-G. (2009). Acta Cryst. E65, m923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaroufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2008). Coord. Chem. Rev. 253, 1384–1397.  Web of Science CrossRef Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationLai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron, 61, 9484–9489.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan Nazihah Wan Ibrahim, Shamsuddin, M., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m909–m910.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds