organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperazine-1,4-diium bis­­(perchlorate) dihydrate

aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitpch@yahoo.com.cn

(Received 7 July 2010; accepted 30 July 2010; online 4 August 2010)

The asymmetric unit of the title compound, C4H12N22+·2ClO4·2H2O, contains half of a piperazinediium cation, one perchlorate anion and one water mol­ecule. The diprotonated piperazine ring, which is completed by crystallographic inversion symmetry, adopts a chair conformation. In the crystal structure, the cations and anions are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background to simple mol­ecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Katrusiak & Szafrański (1999[Katrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576-579.], 2006[Katrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775-15785.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·2ClO4·2H2O

  • Mr = 323.09

  • Monoclinic, P 21 /c

  • a = 7.2588 (15) Å

  • b = 6.5089 (13) Å

  • c = 14.543 (4) Å

  • β = 113.56 (3)°

  • V = 629.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Rigaku Mercury 2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, TheWoodlands, Texas, USA]) Tmin = 0.856, Tmax = 0.896

  • 6362 measured reflections

  • 1458 independent reflections

  • 1130 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 1.07

  • 1458 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O5i 0.90 2.00 2.875 (3) 165
N1—H1A⋯O5ii 0.90 2.14 2.883 (3) 140
N1—H1A⋯O3iii 0.90 2.49 3.060 (3) 122
N1—H1A⋯O2iv 0.90 2.56 3.040 (3) 114
O5—H5WB⋯O3v 0.77 2.26 2.999 (3) 161
O5—H5WA⋯O1 0.82 2.59 3.192 (3) 131
O5—H5WA⋯O4 0.82 2.26 3.040 (3) 159
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+2; (v) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, TheWoodlands, Texas, USA]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio) due to the tunability of their special structural features and their interesting physical properties (Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). In our laboratory, the title compound has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound consists of a half piperazine cation, one chlorate anion and one water molecule (Fig. 1). The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···O and O—H···O hydrogen bonds into a three-dimensional network (Tab. 1 & Fig. 2).

Related literature top

For background to simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Katrusiak & Szafrański (1999, 2006).

Experimental top

Piperazine (1.7 g, 20 mmol) and 10% aqueous HClO4 (25 ml) in a molar ratio of 1:1 were mixed and dissolved in 30 ml water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed after fifteen days.

Refinement top

The H atoms of piperzinium ion were placed in calculated positions, with C—H = 0.97 and N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C/N). The hydrogen atoms of the water molecule were located from a difference fourier map and were fixed at those positions with Uiso(H)=1.5Ueq(O).

Structure description top

Recently, much attention has been devoted to simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio) due to the tunability of their special structural features and their interesting physical properties (Katrusiak & Szafrański, 1999; Katrusiak & Szafrański, 2006). In our laboratory, the title compound has been synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound consists of a half piperazine cation, one chlorate anion and one water molecule (Fig. 1). The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···O and O—H···O hydrogen bonds into a three-dimensional network (Tab. 1 & Fig. 2).

For background to simple molecular–ionic crystals containing organic cations and acid radicals (1:1 molar ratio), see: Katrusiak & Szafrański (1999, 2006).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atomic labels. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The unit cell packing of the title compound viewed along the a-axis; hydrogen bonds are drawn as dashed lines.
Piperazine-1,4-diium bis(perchlorate) dihydrate top
Crystal data top
C4H12N22+·2ClO4·2H2OF(000) = 336
Mr = 323.09Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1130 reflections
a = 7.2588 (15) Åθ = 3.1–27.5°
b = 6.5089 (13) ŵ = 0.56 mm1
c = 14.543 (4) ÅT = 293 K
β = 113.56 (3)°Block, colorless
V = 629.8 (3) Å30.28 × 0.26 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury 2
diffractometer
1458 independent reflections
Radiation source: fine-focus sealed tube1130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 88
Tmin = 0.856, Tmax = 0.896l = 1818
6362 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.361P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1458 reflectionsΔρmax = 0.28 e Å3
83 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C4H12N22+·2ClO4·2H2OV = 629.8 (3) Å3
Mr = 323.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.2588 (15) ŵ = 0.56 mm1
b = 6.5089 (13) ÅT = 293 K
c = 14.543 (4) Å0.28 × 0.26 × 0.20 mm
β = 113.56 (3)°
Data collection top
Rigaku Mercury 2
diffractometer
1458 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1130 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.896Rint = 0.060
6362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
1458 reflectionsΔρmin = 0.25 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3021 (4)1.0866 (4)0.94987 (19)0.0411 (6)
H1C0.25161.01170.88700.049*
H1D0.19891.18210.94910.049*
C20.3493 (4)0.9393 (4)1.03562 (19)0.0426 (6)
H2B0.39041.01491.09810.051*
H2A0.23030.86031.02720.051*
Cl10.78737 (8)0.59992 (10)0.84112 (4)0.0390 (2)
N10.5133 (3)0.7985 (3)1.03919 (15)0.0401 (5)
H1B0.47150.72340.98250.048*
H1A0.54200.71151.09120.048*
O10.9198 (3)0.7709 (4)0.87194 (18)0.0765 (7)
O20.7472 (3)0.5298 (3)0.92385 (14)0.0561 (6)
O30.6016 (3)0.6622 (3)0.76257 (13)0.0562 (6)
O40.8781 (4)0.4421 (4)0.80648 (18)0.0853 (8)
O51.3089 (2)0.5745 (3)0.85594 (12)0.0421 (5)
H5WB1.36000.60400.82070.063*
H5WA1.18570.56530.83240.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (14)0.0393 (14)0.0403 (14)0.0025 (11)0.0140 (11)0.0007 (11)
C20.0444 (14)0.0446 (15)0.0407 (14)0.0009 (12)0.0189 (12)0.0031 (11)
Cl10.0336 (3)0.0498 (4)0.0351 (3)0.0020 (3)0.0152 (2)0.0022 (3)
N10.0538 (13)0.0292 (10)0.0348 (11)0.0025 (9)0.0149 (9)0.0020 (9)
O10.0532 (13)0.0832 (17)0.0868 (16)0.0303 (12)0.0214 (12)0.0037 (13)
O20.0542 (11)0.0726 (14)0.0442 (11)0.0003 (10)0.0226 (9)0.0140 (10)
O30.0415 (10)0.0814 (15)0.0391 (10)0.0024 (10)0.0091 (9)0.0105 (10)
O40.0803 (16)0.102 (2)0.0775 (17)0.0328 (15)0.0362 (14)0.0225 (14)
O50.0373 (9)0.0469 (11)0.0433 (10)0.0015 (8)0.0174 (8)0.0026 (8)
Geometric parameters (Å, º) top
C1—N1i1.487 (3)Cl1—O11.421 (2)
C1—C21.500 (3)Cl1—O21.4218 (19)
C1—H1C0.97Cl1—O31.4339 (19)
C1—H1D0.97N1—C1i1.487 (3)
C2—N11.487 (3)N1—H1B0.90
C2—H2B0.97N1—H1A0.90
C2—H2A0.97O5—H5WB0.77
Cl1—O41.417 (2)O5—H5WA0.82
N1i—C1—C2109.6 (2)O4—Cl1—O2110.46 (15)
N1i—C1—H1C109.7O1—Cl1—O2109.05 (14)
C2—C1—H1C109.7O4—Cl1—O3110.15 (14)
N1i—C1—H1D109.7O1—Cl1—O3109.38 (14)
C2—C1—H1D109.7O2—Cl1—O3108.62 (12)
H1C—C1—H1D108.2C2—N1—C1i111.62 (19)
N1—C2—C1109.7 (2)C2—N1—H1B109.3
N1—C2—H2B109.7C1i—N1—H1B109.3
C1—C2—H2B109.7C2—N1—H1A109.3
N1—C2—H2A109.7C1i—N1—H1A109.3
C1—C2—H2A109.7H1B—N1—H1A108.0
H2B—C2—H2A108.2H5WB—O5—H5WA118.5
O4—Cl1—O1109.16 (16)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5ii0.902.002.875 (3)165
N1—H1A···O5iii0.902.142.883 (3)140
N1—H1A···O3iv0.902.493.060 (3)122
N1—H1A···O2v0.902.563.040 (3)114
O5—H5WB···O3vi0.772.262.999 (3)161
O5—H5WA···O10.822.593.192 (3)131
O5—H5WA···O40.822.263.040 (3)159
Symmetry codes: (ii) x1, y, z; (iii) x+2, y+1, z+2; (iv) x, y+3/2, z+1/2; (v) x+1, y+1, z+2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC4H12N22+·2ClO4·2H2O
Mr323.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2588 (15), 6.5089 (13), 14.543 (4)
β (°) 113.56 (3)
V3)629.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerRigaku Mercury 2
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.856, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
6362, 1458, 1130
Rint0.060
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.07
No. of reflections1458
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5i0.902.002.875 (3)165
N1—H1A···O5ii0.902.142.883 (3)140
N1—H1A···O3iii0.902.493.060 (3)122
N1—H1A···O2iv0.902.563.040 (3)114
O5—H5WB···O3v0.772.262.999 (3)161
O5—H5WA···O10.822.593.192 (3)131
O5—H5WA···O40.822.263.040 (3)159
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+2; (v) x+1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology.

References

First citationKatrusiak, A. & Szafrański, M. (1999). Phys. Rev. Lett. 82, 576–579.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. & Szafrański, M. (2006). J. Am. Chem. Soc. 128, 15775–15785.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, TheWoodlands, Texas, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds