metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m801-m802

(Acetyl­acetonato-κ2O,O′)chlorido­tri­methano­latoniobium(V)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: leandra9herbst@yahoo.com

(Received 28 May 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, [Nb(CH3O)3(C5H7O2)Cl], the NbV atom is coordinated by two O atoms from the chelating acetyl­acetonate ligand, three O atoms from the methano­late groups and one chloride ligand. The octa­hedral environment around niobium is slightly distorted with Nb—O distances in the range 1.8603 (15)–2.1083 (15) Å and an Nb—Cl distance of 2.4693 (9) Å. The O—Nb—O angles vary between 80.74 (6) and 100.82 (7)°, while the trans Cl—Nb—O angle is 167.60 (5)°. There are no hydrogen bonds observed, only an inter­molecular C—H⋯O inter­action.

Related literature

For synthetic background, see: Davies et al. (1999[Davies, H. O., Leedham, T. J., Jones, A. C., O'Brien, P., White, A. J. P. & Williams, D. J. (1999). Polyhedron, 18, 3165-3172.]). For applications of acetyl­acetone in industry, see: Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.], 1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem., 536-537, 197-205.]); Otto et al. (1998[Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum, India: Transworld Research Network.]); Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572-5578.]); Viljoen et al. (2008[Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.], 2009a[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514-m1515.],b[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367-m1368.], 2010[Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603-m604.]); Steyn et al. (2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.]). For related niobium complexes, see: Sokolov et al. (1999[Sokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85-92.], 2005[Sokolov, M., Gushchin, A. L., Tkachev, S. V., Naumov, D. Yu., Nunez, P., Gili, P., Platas, J. G. & Fedin, V. P. (2005). Inorg. Chim. Acta, 358, 2371-2376.]); Anti­nolo et al. (2000[Antinolo, A., Carrillo-Hermosilla, F., Fernandez-Baeza, J., Otero, A., Palomares, E., Rodriguez, A. M. & Sanchez-Barba, L. F. (2000). J. Organomet. Chem. 603, 194-198.]); Dahan et al. (1976[Dahan, F., Kergoat, R., Senechal-Tocquer, M. C. & Guerchais, J. E. (1976). J. Chem. Soc. Dalton Trans. pp. 2202-2209.]).

[Scheme 1]

Experimental

Crystal data
  • [Nb(CH3O)3(C5H7O2)Cl]

  • Mr = 320.57

  • Orthorhombic, P b c a

  • a = 12.296 (5) Å

  • b = 12.915 (4) Å

  • c = 15.470 (5) Å

  • V = 2456.7 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 K

  • 0.36 × 0.30 × 0.19 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.805

  • 28601 measured reflections

  • 3083 independent reflections

  • 2757 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.068

  • S = 1.16

  • 3083 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—Nb1 1.8640 (15)
O2—Nb1 1.8811 (16)
O3—Nb1 1.8603 (15)
O4—Nb1 2.1083 (15)
O5—Nb1 2.0842 (15)
Cl1—Nb1 2.4693 (9)
O3—Nb1—O1 100.82 (7)
O3—Nb1—O2 99.96 (7)
O1—Nb1—O2 99.45 (7)
O3—Nb1—O5 163.63 (6)
O1—Nb1—O5 91.53 (7)
O2—Nb1—O5 88.43 (7)
O3—Nb1—O4 85.71 (7)
O2—Nb1—Cl1 167.60 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O4i 0.98 2.46 3.442 (3) 176
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetylacetone and its analogues find applications in homogenous catalysis and the separations industry (Steyn et al., 1992; 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). This study forms part of ongoing research to investigate the intimate mechanism of the reactions of O,O'- and N,O -bidentate ligands with transition metals used in the nuclear industry, specifically hafnium, zirconium, niobium and tantalum (Viljoen et al., 2008; 2009a,b; 2010; Steyn et al., 2008).

Pale-yellow cubic crystals of the title complex crystallize from a methanol reaction solution containing niobium(V) chloride and acetylacetone after several days (Davies et al., 1999). The asymmetric unit consists of a niobium(V) atom surrounded by three methanolate groups, a chloride ligand and a O,O'- bonded acetylacetonato ligand (Figure 1). The octahedral environment around niobium is slightly distorted with Nb–O distances varying between 1.8603 (15) and 2.1083 (15) Å, while the Nb–Cl distance is 2.4693 (9) Å. The O–Nb–O angles vary between 80.74 (6) and 100.82 (7) ° while the trans Cl–Nb–O angle is 167.60 (5) °. All the bond distances and angles are similar to other relevant niobium(V) structures (Sokolov et al., 1999; 2005; Antinolo et al., 2000 and Dahan et al., 1976). The niobium compounds pack in a head-to-tail fashion along the bc plain.

There are no classical hydrogen bonds observed in this structure. However, the structure is stabilized by C8–H8C..O4* (* = -1/2+x,1/2-y,1-z) intermolecular interactions with C—H = 0.98, H···O = 2.46 and C···O = 3.442 (3) Å and C—H···O angle = 176°.

Related literature top

For synthetic background, see: Davies et al. (1999). For applications of acetylacetone in industry, see: Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010); Viljoen et al. (2008, 2009a, 2009b, 2010); Steyn et al. (2008). For related niobium complexes, see: Sokolov et al. (1999, 2005); Antinolo et al. (2000); Dahan et al. (1976)).

Experimental top

The reaction was performed under modified Schlenk conditions under an argon atmosphere. NbCl5 (0.3134 g, 1.16 mmol) was carefully dissolved in absolute methanol (5 ml) (Care: exothermic reaction). Acetylacetone (0.119 ml, 1.16 mmol) was added to the solution. The colourless solution was stirred for 1 h at room temperature and the solution was left to stand at 252 K for a few days after which pale-yellow crystals, suitable for X-ray diffraction were obtained.

Refinement top

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The highest residual electron-density peak is 0.93 Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.
(Acetylacetonato-κ2O,O')chloridotrimethanolatoniobium(V) top
Crystal data top
[Nb(CH3O)3(C5H7O2)Cl]F(000) = 1296
Mr = 320.57Dx = 1.733 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9878 reflections
a = 12.296 (5) Åθ = 2.6–28.4°
b = 12.915 (4) ŵ = 1.20 mm1
c = 15.470 (5) ÅT = 100 K
V = 2456.7 (16) Å3Cuboid, pale-yellow
Z = 80.36 × 0.3 × 0.19 mm
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3083 independent reflections
Radiation source: fine-focus sealed tube2757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1216
Tmin = 0.673, Tmax = 0.805k = 1417
28601 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0273P)2 + 3.5334P]
where P = (Fo2 + 2Fc2)/3
3083 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 0.87 e Å3
0 constraints
Crystal data top
[Nb(CH3O)3(C5H7O2)Cl]V = 2456.7 (16) Å3
Mr = 320.57Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.296 (5) ŵ = 1.20 mm1
b = 12.915 (4) ÅT = 100 K
c = 15.470 (5) Å0.36 × 0.3 × 0.19 mm
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3083 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2757 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.805Rint = 0.030
28601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.16Δρmax = 1.06 e Å3
3083 reflectionsΔρmin = 0.87 e Å3
141 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.1% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00363 (19)0.09540 (17)0.76165 (14)0.0195 (4)
H1A0.03850.15940.76760.029*
H1B0.02280.06920.81910.029*
H1C0.040.04350.73110.029*
C20.3610 (2)0.07674 (19)0.54112 (15)0.0217 (5)
H2A0.32220.08340.48610.033*
H2B0.38470.00490.54880.033*
H2C0.42470.12240.54090.033*
C30.26952 (19)0.38799 (16)0.74055 (15)0.0195 (4)
H3A0.28550.430.68940.029*
H3B0.33090.39150.78090.029*
H3C0.20390.41450.76890.029*
C40.2957 (2)0.37805 (19)0.41139 (16)0.0231 (5)
H4A0.30830.440.44660.035*
H4B0.26050.39780.3570.035*
H4C0.36540.34430.3990.035*
C50.22378 (18)0.30466 (16)0.45973 (14)0.0158 (4)
C60.14339 (18)0.24919 (17)0.41581 (14)0.0174 (4)
H60.13040.26570.35690.021*
C70.08152 (17)0.17147 (16)0.45334 (13)0.0148 (4)
O10.09963 (13)0.11572 (11)0.71426 (9)0.0162 (3)
O20.29097 (12)0.10497 (12)0.60982 (10)0.0161 (3)
O30.25251 (13)0.28363 (11)0.71528 (9)0.0158 (3)
O40.24286 (13)0.29502 (11)0.54083 (10)0.0155 (3)
O50.09160 (13)0.14211 (11)0.53257 (9)0.0158 (3)
Cl10.02912 (4)0.32547 (4)0.64105 (3)0.01788 (11)
Nb10.178955 (15)0.198214 (14)0.638103 (11)0.01144 (7)
C80.00329 (19)0.11656 (18)0.40125 (14)0.0200 (4)
H8A0.00150.04240.41470.03*
H8B0.01130.12680.33960.03*
H8C0.07520.14450.41540.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0207 (11)0.0218 (10)0.0160 (10)0.0056 (9)0.0046 (8)0.0002 (8)
C20.0221 (11)0.0254 (11)0.0175 (10)0.0029 (9)0.0043 (9)0.0018 (8)
C30.0185 (11)0.0155 (9)0.0245 (11)0.0016 (8)0.0015 (9)0.0023 (8)
C40.0237 (12)0.0247 (12)0.0209 (11)0.0011 (9)0.0053 (9)0.0094 (9)
C50.0175 (10)0.0160 (10)0.0139 (10)0.0040 (8)0.0042 (8)0.0037 (7)
C60.0192 (10)0.0226 (10)0.0105 (9)0.0033 (9)0.0009 (8)0.0023 (8)
C70.0155 (10)0.0178 (9)0.0112 (9)0.0054 (8)0.0003 (8)0.0029 (7)
O10.0187 (8)0.0174 (7)0.0125 (7)0.0016 (6)0.0030 (6)0.0022 (6)
O20.0161 (7)0.0180 (7)0.0140 (7)0.0021 (6)0.0020 (6)0.0010 (6)
O30.0194 (8)0.0148 (7)0.0132 (7)0.0018 (6)0.0011 (6)0.0007 (5)
O40.0173 (7)0.0170 (7)0.0123 (7)0.0024 (6)0.0009 (6)0.0025 (5)
O50.0198 (8)0.0165 (7)0.0112 (7)0.0032 (6)0.0013 (6)0.0006 (5)
Cl10.0170 (2)0.0169 (2)0.0198 (3)0.00236 (19)0.00092 (19)0.00026 (18)
Nb10.01376 (11)0.01214 (10)0.00841 (10)0.00081 (6)0.00045 (6)0.00115 (6)
C80.0199 (11)0.0250 (11)0.0150 (10)0.0007 (9)0.0035 (8)0.0043 (8)
Geometric parameters (Å, º) top
C1—O11.414 (3)C5—O41.282 (3)
C1—H1A0.98C5—C61.397 (3)
C1—H1B0.98C6—C71.387 (3)
C1—H1C0.98C6—H60.95
C2—O21.416 (3)C7—O51.289 (3)
C2—H2A0.98C7—C81.497 (3)
C2—H2B0.98O1—Nb11.8640 (15)
C2—H2C0.98O2—Nb11.8811 (16)
C3—O31.419 (2)O3—Nb11.8603 (15)
C3—H3A0.98O4—Nb12.1083 (15)
C3—H3B0.98O5—Nb12.0842 (15)
C3—H3C0.98Cl1—Nb12.4693 (9)
C4—C51.497 (3)C8—H8A0.98
C4—H4A0.98C8—H8B0.98
C4—H4B0.98C8—H8C0.98
C4—H4C0.98
O1—C1—H1A109.5O5—C7—C6123.9 (2)
O1—C1—H1B109.5O5—C7—C8116.1 (2)
H1A—C1—H1B109.5C6—C7—C8120.0 (2)
O1—C1—H1C109.5C1—O1—Nb1150.52 (14)
H1A—C1—H1C109.5C2—O2—Nb1141.71 (14)
H1B—C1—H1C109.5C3—O3—Nb1144.27 (14)
O2—C2—H2A109.5C5—O4—Nb1133.45 (14)
O2—C2—H2B109.5C7—O5—Nb1133.79 (14)
H2A—C2—H2B109.5O3—Nb1—O1100.82 (7)
O2—C2—H2C109.5O3—Nb1—O299.96 (7)
H2A—C2—H2C109.5O1—Nb1—O299.45 (7)
H2B—C2—H2C109.5O3—Nb1—O5163.63 (6)
O3—C3—H3A109.5O1—Nb1—O591.53 (7)
O3—C3—H3B109.5O2—Nb1—O588.43 (7)
H3A—C3—H3B109.5O3—Nb1—O485.71 (7)
O3—C3—H3C109.5O1—Nb1—O4170.09 (6)
H3A—C3—H3C109.5O2—Nb1—O486.60 (7)
H3B—C3—H3C109.5O5—Nb1—O480.74 (6)
C5—C4—H4A109.5O3—Nb1—Cl187.49 (6)
C5—C4—H4B109.5O1—Nb1—Cl188.76 (5)
H4A—C4—H4B109.5O2—Nb1—Cl1167.60 (5)
C5—C4—H4C109.5O5—Nb1—Cl182.03 (5)
H4A—C4—H4C109.5O4—Nb1—Cl184.06 (5)
H4B—C4—H4C109.5C7—C8—H8A109.5
O4—C5—C6123.7 (2)C7—C8—H8B109.5
O4—C5—C4116.2 (2)H8A—C8—H8B109.5
C6—C5—C4120.0 (2)C7—C8—H8C109.5
C7—C6—C5123.8 (2)H8A—C8—H8C109.5
C7—C6—H6118.1H8B—C8—H8C109.5
C5—C6—H6118.1
O4—C5—C6—C75.6 (3)C1—O1—Nb1—Cl15.1 (3)
C4—C5—C6—C7172.5 (2)C2—O2—Nb1—O3109.4 (2)
C5—C6—C7—O50.0 (3)C2—O2—Nb1—O1147.7 (2)
C5—C6—C7—C8179.7 (2)C2—O2—Nb1—O556.4 (2)
C6—C5—O4—Nb13.5 (3)C2—O2—Nb1—O424.4 (2)
C4—C5—O4—Nb1174.66 (15)C2—O2—Nb1—Cl116.8 (4)
C6—C7—O5—Nb18.1 (3)C7—O5—Nb1—O326.9 (3)
C8—C7—O5—Nb1171.59 (14)C7—O5—Nb1—O1166.10 (19)
C3—O3—Nb1—O1120.8 (2)C7—O5—Nb1—O294.49 (19)
C3—O3—Nb1—O2137.5 (2)C7—O5—Nb1—O47.67 (19)
C3—O3—Nb1—O517.5 (4)C7—O5—Nb1—Cl177.56 (19)
C3—O3—Nb1—O451.7 (2)C5—O4—Nb1—O3169.00 (19)
C3—O3—Nb1—Cl132.5 (2)C5—O4—Nb1—O290.7 (2)
C1—O1—Nb1—O392.3 (3)C5—O4—Nb1—O51.77 (19)
C1—O1—Nb1—O2165.5 (3)C5—O4—Nb1—Cl181.08 (19)
C1—O1—Nb1—O576.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O4i0.982.463.442 (3)176
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Nb(CH3O)3(C5H7O2)Cl]
Mr320.57
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.296 (5), 12.915 (4), 15.470 (5)
V3)2456.7 (16)
Z8
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.36 × 0.3 × 0.19
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.673, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
28601, 3083, 2757
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.068, 1.16
No. of reflections3083
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.87

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—Nb11.8640 (15)O4—Nb12.1083 (15)
O2—Nb11.8811 (16)O5—Nb12.0842 (15)
O3—Nb11.8603 (15)Cl1—Nb12.4693 (9)
O3—Nb1—O1100.82 (7)O1—Nb1—O591.53 (7)
O3—Nb1—O299.96 (7)O2—Nb1—O588.43 (7)
O1—Nb1—O299.45 (7)O3—Nb1—O485.71 (7)
O3—Nb1—O5163.63 (6)O2—Nb1—Cl1167.60 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O4i0.982.463.442 (3)176
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN), the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.

References

First citationAntinolo, A., Carrillo-Hermosilla, F., Fernandez-Baeza, J., Otero, A., Palomares, E., Rodriguez, A. M. & Sanchez-Barba, L. F. (2000). J. Organomet. Chem. 603, 194–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572–5578.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDahan, F., Kergoat, R., Senechal-Tocquer, M. C. & Guerchais, J. E. (1976). J. Chem. Soc. Dalton Trans. pp. 2202–2209.  CSD CrossRef Web of Science Google Scholar
First citationDavies, H. O., Leedham, T. J., Jones, A. C., O'Brien, P., White, A. J. P. & Williams, D. J. (1999). Polyhedron, 18, 3165–3172.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, M., Gushchin, A. L., Tkachev, S. V., Naumov, D. Yu., Nunez, P., Gili, P., Platas, J. G. & Fedin, V. P. (2005). Inorg. Chim. Acta, 358, 2371–2376.  Web of Science CSD CrossRef CAS Google Scholar
First citationSokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85–92.  Web of Science CSD CrossRef Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem., 536–537, 197–205.  CSD CrossRef Web of Science Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603–m604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m801-m802
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds