metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ3-acetato-di-μ3-isonicotinato-μ2-isonicotinato-samarium(III)silver(I)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 6 November 2009; accepted 14 November 2009; online 21 November 2009)

In the title homochiral three-dimensional heterometallic complex, [AgSm(C6H4NO2)3(C2H3O2)]n, the eight-coordinate SmIII ion displays a bicapped trigonal-prismatic geometry, being coordinated by two O atoms from one acetate ligand, four O atoms from four bridging isonicotinate ligands and two O atoms from two terminal isonicotinate ligands. The four-coordinate AgI ion adopts a tetra­hedral geometry, being bonded to two N atoms from two bridging isonicotinate ligands and two O atoms from two acetate ligands. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network.

Related literature

For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Gu & Xue (2006[Gu, X. & Xue, D. (2006). Inorg. Chem. 45, 9257-9261.]); Peng et al. (2008[Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409-1411.]); Zhu et al. (2009[Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.]).

[Scheme 1]

Experimental

Crystal data
  • [AgSm(C6H4NO2)3(C2H3O2)]

  • Mr = 683.58

  • Hexagonal, P 61 22

  • a = 11.8184 (5) Å

  • c = 27.340 (2) Å

  • V = 3307.0 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.58 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.444, Tmax = 0.507

  • 17136 measured reflections

  • 1992 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.06

  • 1992 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 739 Friedel pairs

  • Flack parameter: 0.006 (15)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Peng et al., 2008; Zhu et al., 2009). However, because of complicated interactions among the organic moiety and two types of metal centers, the construction of a homochiral Ln—M heterometallic coordination framework is one of the most challenging issues in synthetic chemistry and materials science(Gu & Xue, 2006). As an extension of this research, the structure of the title compound, a new homochiral heterometallic coordination polymer, (I), has been determined which is presented in this article.

In the title compound (Fig. 1), there are half of SmIII ion, half of AgI ion, half of acetate ligand, and one and half crystallogaphically unique isonicotinate ligands in the asymmetrical unit. Isonicotinate ligands have two types of distinctly different coordination modes: one acts as a bridging ligand to coordinate one AgI ion and two SmIII ions, and the other acts as a terminal ligand to coordinate two SmIII ions. Acetate ligand adopts chelating [SmIII] and bridging [AgI] coordination modes. Each SmIII ion is eight-coordinated by two O atoms from one acetate ligand, four O atoms from four bridging isonicotinate ligands, and two O atom from two terminal isonicotinate ligands. The Sm center can be described as having a bicapped trigonal prism coordination geometry. The four-coordinated AgI ion is bonded to two N atoms from two bridging isonicotinate ligand and two O atoms from two acetate ligands to furnish a tetrahedral geometry, (Table 1). These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2).

Related literature top

For the applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands in ion exchange, magnetism, bimetallic catalysis and as luminescent probes, see: Cheng et al. (2006); Gu & Xue (2006); Peng et al. (2008); Zhu et al. (2009).

Experimental top

A mixture of AgNO3(0.057 g, 0.33 mmol), Sm2O3(0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), acetic acid (0.080 g, 1.33 mmol), and H2O(7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) x, 1 + x-y, 1/6 - z; (B) 1 + x-y, 2 - y, -z; (C) 1 + x-y, 1 - y, -z; (D) 1 + x, 1 + y, z; (E) 1 - y, 1 - x, -1/6 - z; (F) 1 + x-y, 1 + x, 1/6 + z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[µ3-acetato-di-µ3-isonicotinato-µ2-isonicotinato- samarium(III)silver(I)] top
Crystal data top
[AgSm(C6H4NO2)3(C2H3O2)]Dx = 2.059 Mg m3
Mr = 683.58Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6122Cell parameters from 7353 reflections
Hall symbol: P 61 2 (0 0 -1)θ = 2.5–27.4°
a = 11.8184 (5) ŵ = 3.58 mm1
c = 27.340 (2) ÅT = 296 K
V = 3307.0 (3) Å3Block, colorless
Z = 60.23 × 0.20 × 0.19 mm
F(000) = 1974
Data collection top
Bruker APEXII area-detector
diffractometer
1992 independent reflections
Radiation source: fine-focus sealed tube1928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scanθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.444, Tmax = 0.507k = 1114
17136 measured reflectionsl = 3230
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0242P)2 + 2.1731P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1992 reflectionsΔρmax = 0.65 e Å3
154 parametersΔρmin = 0.45 e Å3
0 restraintsAbsolute structure: Flack (1983), 739 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (15)
Crystal data top
[AgSm(C6H4NO2)3(C2H3O2)]Z = 6
Mr = 683.58Mo Kα radiation
Hexagonal, P6122µ = 3.58 mm1
a = 11.8184 (5) ÅT = 296 K
c = 27.340 (2) Å0.23 × 0.20 × 0.19 mm
V = 3307.0 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1992 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1928 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.507Rint = 0.046
17136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.65 e Å3
S = 1.06Δρmin = 0.45 e Å3
1992 reflectionsAbsolute structure: Flack (1983), 739 Friedel pairs
154 parametersAbsolute structure parameter: 0.006 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.86531 (2)1.00000.00000.02353 (8)
Ag20.51785 (4)0.75893 (2)0.08330.03675 (12)
O10.1435 (3)0.2764 (3)0.10025 (9)0.0409 (7)
O20.0057 (3)0.1970 (3)0.04112 (10)0.0401 (7)
O30.6346 (3)0.9170 (3)0.02435 (11)0.0401 (7)
O41.0601 (3)1.0664 (3)0.04589 (11)0.0495 (8)
C10.1062 (4)0.2765 (4)0.05754 (14)0.0312 (10)
C20.1996 (4)0.3805 (4)0.02321 (13)0.0328 (9)
C30.1670 (4)0.3897 (4)0.02451 (15)0.0410 (12)
H40.08470.33060.03660.049*
C40.2570 (5)0.4864 (5)0.05370 (16)0.0460 (11)
H20.23280.49140.08560.055*
C50.4073 (6)0.5645 (7)0.0058 (2)0.101 (3)
H30.49020.62530.01690.121*
C60.3228 (6)0.4690 (6)0.03802 (19)0.083 (3)
H50.35000.46550.06960.100*
C70.6215 (5)1.00000.00000.0345 (13)
C80.4962 (7)1.00000.00000.089 (3)
H11A0.51331.08840.00100.133*0.50
H11B0.44810.95810.02920.133*0.50
H11C0.44580.95350.02820.133*0.50
C91.1136 (5)1.0568 (3)0.08330.0345 (13)
C101.2622 (6)1.1311 (3)0.08330.0375 (13)
C111.3318 (5)1.2039 (6)0.04352 (19)0.0576 (15)
H131.28891.20830.01570.069*
C121.4659 (6)1.2700 (8)0.0456 (3)0.082 (2)
H141.51121.32000.01860.099*
N10.3766 (4)0.5734 (4)0.03960 (13)0.0508 (11)
N21.5358 (7)1.2679 (4)0.08330.093 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.02697 (12)0.02447 (15)0.01831 (13)0.01224 (7)0.00126 (6)0.00253 (11)
Ag20.0309 (2)0.0440 (2)0.0310 (2)0.01544 (12)0.0000.00131 (18)
O10.0433 (18)0.0454 (18)0.0227 (14)0.0137 (15)0.0043 (13)0.0073 (12)
O20.0395 (17)0.0320 (16)0.0298 (15)0.0036 (14)0.0050 (13)0.0045 (12)
O30.0345 (16)0.0457 (18)0.0413 (17)0.0210 (14)0.0125 (13)0.0158 (14)
O40.0354 (17)0.070 (2)0.0403 (17)0.0244 (15)0.0079 (14)0.0031 (15)
C10.038 (2)0.024 (2)0.024 (2)0.0092 (18)0.0050 (17)0.0024 (16)
C20.038 (2)0.028 (2)0.023 (2)0.009 (2)0.0038 (18)0.0002 (17)
C30.040 (3)0.033 (2)0.031 (2)0.004 (2)0.0042 (18)0.0024 (19)
C40.048 (3)0.042 (3)0.028 (2)0.008 (2)0.002 (2)0.008 (2)
C50.061 (4)0.095 (5)0.045 (3)0.037 (3)0.022 (3)0.033 (3)
C60.066 (4)0.075 (4)0.031 (3)0.023 (3)0.017 (3)0.020 (3)
C70.031 (2)0.046 (3)0.031 (3)0.0231 (17)0.0010 (15)0.002 (3)
C80.062 (3)0.129 (9)0.098 (7)0.064 (4)0.021 (3)0.042 (7)
C90.031 (3)0.034 (2)0.037 (3)0.0156 (16)0.0000.000 (2)
C100.035 (3)0.042 (3)0.034 (3)0.0174 (16)0.0000.004 (3)
C110.041 (3)0.080 (4)0.051 (3)0.029 (3)0.011 (2)0.025 (3)
C120.055 (4)0.102 (6)0.075 (4)0.028 (4)0.026 (3)0.027 (4)
N10.042 (2)0.046 (2)0.033 (2)0.0024 (19)0.0019 (18)0.0115 (17)
N20.049 (4)0.120 (6)0.086 (6)0.025 (2)0.0000.009 (5)
Geometric parameters (Å, º) top
Sm1—O2i2.336 (3)C3—H40.9300
Sm1—O2ii2.336 (3)C4—N11.323 (6)
Sm1—O42.384 (3)C4—H20.9300
Sm1—O4iii2.384 (3)C5—N11.311 (6)
Sm1—O1iv2.478 (3)C5—C61.386 (7)
Sm1—O1v2.478 (3)C5—H30.9300
Sm1—O32.483 (3)C6—H50.9300
Sm1—O3iii2.483 (3)C7—O3iii1.257 (4)
Ag2—N12.316 (4)C7—C81.482 (9)
Ag2—N1vi2.316 (4)C8—H11A0.9600
Ag2—O32.328 (3)C8—H11B0.9600
Ag2—O3vi2.328 (3)C8—H11C0.9600
O1—C11.248 (5)C9—O4vi1.238 (4)
O1—Sm1vii2.478 (3)C9—C101.521 (8)
O2—C11.261 (5)C10—C111.376 (6)
O2—Sm1viii2.336 (3)C10—C11vi1.376 (6)
O3—C71.257 (4)C11—C121.374 (8)
O4—C91.238 (4)C11—H130.9300
C1—C21.501 (5)C12—N21.329 (8)
C2—C61.362 (7)C12—H140.9300
C2—C31.380 (6)N2—C12vi1.329 (8)
C3—C41.363 (6)
O2i—Sm1—O2ii162.24 (16)C9—O4—Sm1149.2 (3)
O2i—Sm1—O483.32 (11)O1—C1—O2124.9 (4)
O2ii—Sm1—O482.47 (11)O1—C1—C2118.0 (4)
O2i—Sm1—O4iii82.47 (11)O2—C1—C2117.1 (3)
O2ii—Sm1—O4iii83.32 (11)C6—C2—C3117.0 (4)
O4—Sm1—O4iii73.52 (16)C6—C2—C1120.6 (4)
O2i—Sm1—O1iv102.15 (10)C3—C2—C1122.4 (4)
O2ii—Sm1—O1iv83.83 (10)C4—C3—C2119.2 (4)
O4—Sm1—O1iv145.28 (11)C4—C3—H4120.4
O4iii—Sm1—O1iv73.30 (11)C2—C3—H4120.4
O2i—Sm1—O1v83.83 (10)N1—C4—C3124.3 (4)
O2ii—Sm1—O1v102.15 (10)N1—C4—H2117.9
O4—Sm1—O1v73.30 (11)C3—C4—H2117.9
O4iii—Sm1—O1v145.28 (11)N1—C5—C6123.5 (5)
O1iv—Sm1—O1v141.02 (16)N1—C5—H3118.3
O2i—Sm1—O3124.27 (10)C6—C5—H3118.3
O2ii—Sm1—O373.44 (10)C2—C6—C5119.6 (5)
O4—Sm1—O3132.68 (10)C2—C6—H5120.2
O4iii—Sm1—O3139.93 (12)C5—C6—H5120.2
O1iv—Sm1—O372.14 (10)O3iii—C7—O3118.3 (5)
O1v—Sm1—O372.89 (11)O3iii—C7—C8120.9 (3)
O2i—Sm1—O3iii73.44 (10)O3—C7—C8120.9 (3)
O2ii—Sm1—O3iii124.27 (10)O3iii—C7—Sm159.1 (3)
O4—Sm1—O3iii139.93 (12)O3—C7—Sm159.1 (3)
O4iii—Sm1—O3iii132.68 (10)C8—C7—Sm1180.000 (1)
O1iv—Sm1—O3iii72.89 (11)C7—C8—H11A109.5
O1v—Sm1—O3iii72.14 (10)C7—C8—H11B109.5
O3—Sm1—O3iii51.51 (13)H11A—C8—H11B109.5
O2i—Sm1—C798.88 (8)C7—C8—H11C109.5
O2ii—Sm1—C798.88 (8)H11A—C8—H11C109.5
O4—Sm1—C7143.24 (8)H11B—C8—H11C109.5
O4iii—Sm1—C7143.24 (8)O4—C9—O4vi127.5 (6)
O1iv—Sm1—C770.51 (8)O4—C9—C10116.3 (3)
O1v—Sm1—C770.51 (8)O4vi—C9—C10116.3 (3)
O3—Sm1—C725.76 (7)C11—C10—C11vi117.6 (6)
O3iii—Sm1—C725.76 (7)C11—C10—C9121.2 (3)
N1—Ag2—N1vi102.7 (2)C11vi—C10—C9121.2 (3)
N1—Ag2—O3105.05 (13)C10—C11—C12118.8 (5)
N1vi—Ag2—O3112.42 (14)C10—C11—H13120.6
N1—Ag2—O3vi112.42 (14)C12—C11—H13120.6
N1vi—Ag2—O3vi105.05 (13)N2—C12—C11125.0 (6)
O3—Ag2—O3vi118.21 (15)N2—C12—H14117.5
C1—O1—Sm1vii124.3 (3)C11—C12—H14117.5
C1—O2—Sm1viii146.4 (3)C5—N1—C4116.4 (4)
C7—O3—Ag2137.6 (3)C5—N1—Ag2117.8 (3)
C7—O3—Sm195.1 (3)C4—N1—Ag2124.7 (3)
Ag2—O3—Sm1126.58 (12)C12—N2—C12vi114.9 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) xy+1, y+1, z; (iii) xy+1, y+2, z; (iv) y+1, x+1, z1/6; (v) xy+1, x+1, z+1/6; (vi) x, xy+1, z+1/6; (vii) y1, x+y, z1/6; (viii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[AgSm(C6H4NO2)3(C2H3O2)]
Mr683.58
Crystal system, space groupHexagonal, P6122
Temperature (K)296
a, c (Å)11.8184 (5), 27.340 (2)
V3)3307.0 (3)
Z6
Radiation typeMo Kα
µ (mm1)3.58
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.444, 0.507
No. of measured, independent and
observed [I > 2σ(I)] reflections
17136, 1992, 1928
Rint0.046
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.049, 1.06
No. of reflections1992
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.45
Absolute structureFlack (1983), 739 Friedel pairs
Absolute structure parameter0.006 (15)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, X. & Xue, D. (2006). Inorg. Chem. 45, 9257–9261.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds