organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Nitro­phen­yl)-1,3-dioxan-5-ol

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: duxiaohua@zjut.edu.cn

(Received 14 October 2009; accepted 21 October 2009; online 28 October 2009)

In the title compound, C10H11NO5, the six-membered 1,3-dioxane ring displays a chair conformation, with the hydr­oxy and 2-nitro­phenyl groups in equatorial positions, which minimizes steric hindrance. In the crystal, mol­ecules are linked into chains along the b axis by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For background to the condensation of glycerol with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols, see: Deutsch et al. (2007[Deutsch, J., Nartin, A. & Lieske, H. (2007). J. Catal. 245, 428-435.]); Hill et al. (1928[Hill, H. S., Whelen, M. S. & Hibbert, H. (1928). J. Am. Chem. Soc. 50, 2235-2242.]). Six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g. 1,3-dihydroxy­acetone and 1,3-propane­diol, see: Wang et al. (2003[Wang, K., Hawley, M. C. & Deathos, S. J. (2003). Ind. Eng. Chem. Res. 42, 2913-2923.], 2009[Wang, J. L., Yu, J. E. & Ji, J. B. (2009). Chinese Patent CN101412706A.]). For a related structure, see: Li et al. (2009[Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009). Acta Cryst. E65, o1296.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO5

  • Mr = 225.20

  • Monoclinic, P 21 /c

  • a = 8.0166 (4) Å

  • b = 10.6499 (5) Å

  • c = 12.4109 (6) Å

  • β = 101.221 (1)°

  • V = 1039.34 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.35 × 0.19 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.986

  • 9906 measured reflections

  • 2346 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.00

  • 2346 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O3i 0.82 2.08 2.8548 (18) 157
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The condensation of glycerol, a renewable raw materials, with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols was investigated for many years (Hill et al., 1928; Deutsch et al., 2007). The condensation products are used widely as novel chemical intermediates. The six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g., 1,3-dihydroxyacetone (Wang et al., 2009) and 1,3-propanediol (Wang et al., 2003).

In this article, we report the crystal structure of the title compoud (Fig. 1) which has been determined in our laboratory. Its main structure unit is a six-membered ring, [1,3]dioxan, which displays a chair conformation, with the hydroxyl and the 2-nitrophenyl groups in the equatorial positions. The atoms C1 and C3 of the [1,3]dioxan ring lie 0.635 (2) and 0.682 (3)Å, respectively, from the mean plane of O2/O3/C4/C2. The dihedral angel between the mean plane O2/O3/C4/C2 and the benzene ring is 32.12(14 °. The molecules are linked into chains along the b-axis involving intermolecular hydrogen bond of the type O—H···O (Table 1) thus stabilizing the crystal structure (Fig. 2).

Related literature top

For background to the condensation of glycerol with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols, see: Deutsch et al. (2007); Hill et al. (1928). Six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g. 1,3-dihydroxyacetone and 1,3-propanediol, see: Wang et al. (2003, 2009). For a related structure, see: Li et al. (2009).

Experimental top

The title compound was synthesized by treating glycerol (2.76 g, 30 mmol) with 2-nitrobenzaldehyde (3.02 g, 20 mmol) in the presence of p-toluenesulfonic (0.06 g) as a catalyst in cyclohexane (40 ml). This reaction mixture was placed in a two-necked round-bottomed flask fitted with a magnetic stirrer and Dean-Stark assembly. The mixture was refluxed with stirring and water present in the reaction was removed as an azeotropeover for 6 h. Once the reaction was complete, the mixture was washed with water, and the solvent was distilled under vacuum. The resulting reaction mixture was purified directly by silica gel column chromatography (eluent:petroleum ether/EtOAc; 7:4). Single crystals were obtained by slow evaporation of acetone/hexane mixture (1:1) of the title compound.

Refinement top

H atoms were placed in calculated position with C—H = 0.98, 0.97 and 0.93 Å for methine, methylene and aryl H-atoms, respectively, and O—H = 0.82 Å. All H atoms were refined in riding mode, with Uiso(H) = 1.2Ueq of the carrier atoms.

Structure description top

The condensation of glycerol, a renewable raw materials, with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols was investigated for many years (Hill et al., 1928; Deutsch et al., 2007). The condensation products are used widely as novel chemical intermediates. The six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g., 1,3-dihydroxyacetone (Wang et al., 2009) and 1,3-propanediol (Wang et al., 2003).

In this article, we report the crystal structure of the title compoud (Fig. 1) which has been determined in our laboratory. Its main structure unit is a six-membered ring, [1,3]dioxan, which displays a chair conformation, with the hydroxyl and the 2-nitrophenyl groups in the equatorial positions. The atoms C1 and C3 of the [1,3]dioxan ring lie 0.635 (2) and 0.682 (3)Å, respectively, from the mean plane of O2/O3/C4/C2. The dihedral angel between the mean plane O2/O3/C4/C2 and the benzene ring is 32.12(14 °. The molecules are linked into chains along the b-axis involving intermolecular hydrogen bond of the type O—H···O (Table 1) thus stabilizing the crystal structure (Fig. 2).

For background to the condensation of glycerol with aldehydes and ketones to [1,3]dioxan-5-ols and [1,3]dioxolan-4-yl-methanols, see: Deutsch et al. (2007); Hill et al. (1928). Six-membered ring acetals are potential precursors for the production of the green platform chemicals, e.g. 1,3-dihydroxyacetone and 1,3-propanediol, see: Wang et al. (2003, 2009). For a related structure, see: Li et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing H-bonded chains of molecules lying along the b-axis.
2-(2-Nitrophenyl)-1,3-dioxan-5-ol top
Crystal data top
C10H11NO5F(000) = 472
Mr = 225.20Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6214 reflections
a = 8.0166 (4) Åθ = 3.2–27.4°
b = 10.6499 (5) ŵ = 0.12 mm1
c = 12.4109 (6) ÅT = 296 K
β = 101.221 (1)°Chunk, colorless
V = 1039.34 (9) Å30.35 × 0.19 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2346 independent reflections
Radiation source: rolling anode1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.960, Tmax = 0.986l = 1615
9906 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.330P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2346 reflectionsΔρmax = 0.18 e Å3
147 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0152 (19)
Crystal data top
C10H11NO5V = 1039.34 (9) Å3
Mr = 225.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0166 (4) ŵ = 0.12 mm1
b = 10.6499 (5) ÅT = 296 K
c = 12.4109 (6) Å0.35 × 0.19 × 0.12 mm
β = 101.221 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2346 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1466 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.986Rint = 0.025
9906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
2346 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.65238 (15)0.68340 (10)0.28615 (9)0.0558 (3)
C50.78112 (19)0.53115 (14)0.41276 (12)0.0456 (4)
O20.70918 (18)0.73226 (11)0.47090 (10)0.0693 (4)
N10.89732 (19)0.48237 (15)0.24515 (13)0.0616 (4)
C90.8397 (2)0.31608 (16)0.36545 (16)0.0632 (5)
H90.87620.26000.31740.076*
C30.7680 (2)0.66933 (14)0.38712 (13)0.0485 (4)
H30.87970.70220.38040.058*
C100.83678 (19)0.44328 (15)0.34425 (13)0.0488 (4)
C60.7294 (2)0.48360 (17)0.50467 (14)0.0588 (5)
H60.69030.53860.55240.071*
C80.7884 (3)0.27296 (19)0.45772 (18)0.0716 (6)
H80.79050.18740.47300.086*
O40.9752 (2)0.57938 (16)0.24619 (14)0.0940 (5)
O10.6154 (2)1.02233 (13)0.3183 (2)0.1241 (8)
H1010.52921.04970.27870.149*
C20.7052 (3)0.86500 (18)0.45027 (19)0.0837 (7)
H2A0.81950.89490.45020.100*
H2B0.66280.90840.50820.100*
C10.5922 (3)0.89338 (17)0.3408 (2)0.0783 (7)
H10.47300.87750.34460.094*
C40.6432 (3)0.81319 (17)0.25365 (17)0.0706 (6)
H4A0.56100.82280.18560.085*
H4B0.75310.84030.24080.085*
C70.7342 (3)0.3565 (2)0.52745 (16)0.0700 (5)
H70.70040.32740.59050.084*
O50.8708 (2)0.41251 (17)0.16609 (13)0.1034 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0629 (7)0.0404 (6)0.0568 (7)0.0064 (5)0.0067 (5)0.0055 (5)
C50.0449 (8)0.0405 (9)0.0484 (8)0.0015 (6)0.0018 (7)0.0013 (7)
O20.0931 (9)0.0483 (7)0.0641 (8)0.0167 (6)0.0093 (7)0.0112 (6)
N10.0601 (9)0.0607 (10)0.0658 (10)0.0037 (7)0.0165 (7)0.0066 (8)
C90.0663 (11)0.0415 (10)0.0760 (12)0.0095 (8)0.0007 (9)0.0071 (9)
C30.0503 (9)0.0401 (9)0.0515 (9)0.0013 (7)0.0008 (7)0.0043 (7)
C100.0465 (8)0.0448 (9)0.0529 (9)0.0027 (7)0.0044 (7)0.0020 (7)
C60.0661 (11)0.0551 (11)0.0547 (10)0.0040 (8)0.0102 (8)0.0037 (8)
C80.0802 (13)0.0446 (11)0.0809 (13)0.0019 (9)0.0068 (11)0.0126 (10)
O40.1066 (12)0.0895 (12)0.0969 (11)0.0285 (10)0.0472 (9)0.0076 (9)
O10.0894 (11)0.0398 (9)0.214 (2)0.0013 (7)0.0431 (13)0.0144 (10)
C20.0989 (16)0.0438 (11)0.0996 (16)0.0156 (10)0.0026 (13)0.0185 (10)
C10.0624 (11)0.0373 (10)0.1237 (18)0.0046 (8)0.0106 (12)0.0036 (11)
C40.0676 (12)0.0457 (10)0.0879 (14)0.0100 (8)0.0114 (10)0.0209 (10)
C70.0750 (13)0.0679 (13)0.0638 (11)0.0063 (10)0.0057 (10)0.0205 (10)
O50.1424 (15)0.1019 (13)0.0717 (9)0.0136 (11)0.0352 (10)0.0322 (9)
Geometric parameters (Å, º) top
O3—C31.4142 (18)C6—C71.382 (3)
O3—C41.438 (2)C6—H60.9300
C5—C61.383 (2)C8—C71.369 (3)
C5—C101.395 (2)C8—H80.9300
C5—C31.505 (2)O1—C11.421 (2)
O2—C31.394 (2)O1—H1010.8200
O2—C21.436 (2)C2—C11.510 (3)
N1—O41.206 (2)C2—H2A0.9700
N1—O51.2167 (19)C2—H2B0.9700
N1—C101.468 (2)C1—C41.496 (3)
C9—C81.369 (3)C1—H10.9800
C9—C101.379 (2)C4—H4A0.9700
C9—H90.9300C4—H4B0.9700
C3—H30.9800C7—H70.9300
C3—O3—C4109.84 (12)C9—C8—H8120.2
C6—C5—C10116.10 (15)C7—C8—H8120.2
C6—C5—C3120.83 (15)C1—O1—H101109.5
C10—C5—C3123.00 (15)O2—C2—C1110.25 (16)
C3—O2—C2109.83 (15)O2—C2—H2A109.6
O4—N1—O5122.79 (18)C1—C2—H2A109.6
O4—N1—C10119.27 (15)O2—C2—H2B109.6
O5—N1—C10117.90 (16)C1—C2—H2B109.6
C8—C9—C10119.50 (18)H2A—C2—H2B108.1
C8—C9—H9120.3O1—C1—C4110.2 (2)
C10—C9—H9120.3O1—C1—C2106.94 (17)
O2—C3—O3110.58 (13)C4—C1—C2109.60 (16)
O2—C3—C5109.41 (14)O1—C1—H1110.0
O3—C3—C5107.32 (12)C4—C1—H1110.0
O2—C3—H3109.8C2—C1—H1110.0
O3—C3—H3109.8O3—C4—C1110.63 (17)
C5—C3—H3109.8O3—C4—H4A109.5
C9—C10—C5122.56 (16)C1—C4—H4A109.5
C9—C10—N1116.26 (16)O3—C4—H4B109.5
C5—C10—N1121.19 (15)C1—C4—H4B109.5
C7—C6—C5121.76 (18)H4A—C4—H4B108.1
C7—C6—H6119.1C8—C7—C6120.43 (19)
C5—C6—H6119.1C8—C7—H7119.8
C9—C8—C7119.65 (18)C6—C7—H7119.8
C2—O2—C3—O365.20 (18)O5—N1—C10—C933.6 (2)
C2—O2—C3—C5176.81 (14)O4—N1—C10—C535.4 (2)
C4—O3—C3—O264.54 (18)O5—N1—C10—C5146.86 (17)
C4—O3—C3—C5176.20 (14)C10—C5—C6—C70.5 (2)
C6—C5—C3—O23.4 (2)C3—C5—C6—C7177.47 (16)
C10—C5—C3—O2179.88 (14)C10—C9—C8—C70.3 (3)
C6—C5—C3—O3116.59 (16)C3—O2—C2—C158.5 (2)
C10—C5—C3—O360.11 (19)O2—C2—C1—O1171.0 (2)
C8—C9—C10—C50.9 (3)O2—C2—C1—C451.6 (2)
C8—C9—C10—N1178.63 (16)C3—O3—C4—C157.32 (19)
C6—C5—C10—C90.4 (2)O1—C1—C4—O3168.64 (14)
C3—C5—C10—C9176.42 (15)C2—C1—C4—O351.2 (2)
C6—C5—C10—N1179.05 (14)C9—C8—C7—C60.6 (3)
C3—C5—C10—N14.1 (2)C5—C6—C7—C81.1 (3)
O4—N1—C10—C9144.09 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O3i0.822.082.8548 (18)157
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11NO5
Mr225.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0166 (4), 10.6499 (5), 12.4109 (6)
β (°) 101.221 (1)
V3)1039.34 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.19 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.960, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9906, 2346, 1466
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.00
No. of reflections2346
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O3i0.822.082.8548 (18)156.7
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

References

First citationDeutsch, J., Nartin, A. & Lieske, H. (2007). J. Catal. 245, 428–435.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHill, H. S., Whelen, M. S. & Hibbert, H. (1928). J. Am. Chem. Soc. 50, 2235–2242.  CrossRef CAS Google Scholar
First citationLi, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009). Acta Cryst. E65, o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Hawley, M. C. & Deathos, S. J. (2003). Ind. Eng. Chem. Res. 42, 2913–2923.  Web of Science CrossRef CAS Google Scholar
First citationWang, J. L., Yu, J. E. & Ji, J. B. (2009). Chinese Patent CN101412706A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds