organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-(p-Tolylsulfonyl)-8,14,24-trioxa-11,22,23-tri­aza­tetra­cyclo[19.2.1.02,7.015,20]tetracosa-1(23),2,4,6,15,17,19,21-octa­ene­

aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: Han_jianrong@126.com

(Received 22 June 2009; accepted 29 June 2009; online 8 July 2009)

In the title compound, C25H23N3O5S, the central 1,3,4-oxadiazole ring makes dihedral angles of 35.05 (7), 23.68 (7) and 82.55 (8)°, with the three benzene rings. In the crystal structure, the packing is stabilized by weak non-classical inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into an infinite network.

Related literature

For related structures, see: Du, Hua & Jin (2001[Du, D. M., Hua, W. T. & Jin, X. L. (2001). J. Mol. Struct. 561, 145-152.]). For applications and synthesis of fluorescent sensors, see: Tong et al. (2000[Tong, A. J., Song, Y. S., Li, L. D., Hayashita, T., Teramae, N., Park, C. & Bartsch, R. A. (2000). Ana. Chim. Acta, 420, 57-64.]); Silva et al. (2000[Silva, A. P. D., Fox, D. B., Huxley, A. J. M. & Moody, T. S. (2000). Coord. Chem. Rev. 205, 41-57.]); Valeur & Leray (2000[Valeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3-40.]). For reference geometrical data, see: Du, Hua, Wang & Yan (2001[Du, D. M., Hua, W. T., Wang, Z. M. & Yan, C. H. (2001). Heteroat. Chem. 12, 480-484.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O5S

  • Mr = 477.52

  • Monoclinic, P 21 /c

  • a = 13.0474 (19) Å

  • b = 9.6809 (14) Å

  • c = 18.261 (3) Å

  • β = 97.479 (3)°

  • V = 2286.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 294 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.964

  • 12599 measured reflections

  • 4656 independent reflections

  • 2878 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.01

  • 4656 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O4i 0.97 2.52 3.424 (3) 154
C20—H20⋯O4i 0.93 2.39 3.314 (3) 173
C5—H5⋯O4ii 0.93 2.51 3.253 (3) 137
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The development of fluorescent sensors for organic molecules is of great practical importance in chemical, biological, and pharmaceutical sciences (Silva et al., 2000; Valeur et al., 2000). Therefore, the design and synthesis of new functionalized macrocycles for selective recognition of other species is of great interest to chemists. Many functionalized macrocycles have been synthesized and employed to develop fluorescent sensors (Tong et al., 2000). 2,5-Diaryl-1,3,4-oxadizole forms chiral macrocyclic phosphoramidate receptors with phosphorus oxychloride, and their crystal structures have been reported (Du, Hua & Jin, 2001). As part of an investigation of the potential recognition properties of macrocycles, we now reported the synthesis and structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The oxadizole ring (O1/C1/N1/N2/C18) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0017 Å. It makes dihedral angles of 35.05 (7), 23.68 (7) and 82.55 (8)°, respectively, with the benzene rings (C2—C7), (C12—C17) and (C19—C24). The crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds which link the molecules into an infinite network. The bond lengths and angles in (I) are within their normal ranges (Du, Hua, Wang & Yan 2001).

Related literature top

For related structures, see: Du, Hua & Jin (2001). For general background, see: Tong et al. (2000); Silva et al. (2000); Valeur et al. (2000). For reference geometrical data, see: Du, Hua, Wang & Yan (2001).

Experimental top

2,5-Di(o-hydroxyphenyl)-1,3,4-oxadiazole (0.8 g, 3.0 mmol), K2CO3 (1.4 g, 10 mmol) and tri-(p-phenylsulfonyl) diethanol amine (2.3 g, 4 mmol) were added and dissolved in 50 ml of DMF and the mixture was stirred at 413 K for 20 h giving a colourless precipitate. The product was isolated, recrystallized from ethyl acetate then dried in a vacuum to give the pure compound in 65% yield. colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethyl acetate.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C)or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines; H-atoms not involved in interactions have been excluded.
11-(p-Tolylsulfonyl)-8,14,24-trioxa-11,22,23-triazatetracyclo[19.2.1.02,7.015,20]tetracosa-1(23),2,4,6,15,17,19,21-octaene top
Crystal data top
C25H23N3O5SF(000) = 1000
Mr = 477.52Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3043 reflections
a = 13.0474 (19) Åθ = 2.4–24.5°
b = 9.6809 (14) ŵ = 0.19 mm1
c = 18.261 (3) ÅT = 294 K
β = 97.479 (3)°Prism, colourless
V = 2286.9 (6) Å30.30 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4656 independent reflections
Radiation source: fine-focus sealed tube2878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1416
Tmin = 0.932, Tmax = 0.964k = 1211
12599 measured reflectionsl = 1822
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4604P]
where P = (Fo2 + 2Fc2)/3
4656 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C25H23N3O5SV = 2286.9 (6) Å3
Mr = 477.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0474 (19) ŵ = 0.19 mm1
b = 9.6809 (14) ÅT = 294 K
c = 18.261 (3) Å0.30 × 0.22 × 0.20 mm
β = 97.479 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4656 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2878 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.964Rint = 0.044
12599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
4656 reflectionsΔρmin = 0.33 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08777 (4)1.10726 (6)0.12913 (3)0.03359 (16)
N10.52489 (14)0.5209 (2)0.19897 (11)0.0429 (5)
N20.56917 (14)0.5766 (2)0.13898 (11)0.0433 (5)
N30.18176 (14)0.99856 (19)0.12592 (10)0.0368 (5)
O10.40350 (11)0.62864 (15)0.12555 (8)0.0346 (4)
O20.26584 (14)0.73372 (16)0.20414 (9)0.0478 (5)
O30.35451 (12)0.84722 (17)0.04510 (8)0.0452 (4)
O40.00564 (11)1.04490 (16)0.09383 (9)0.0417 (4)
O50.09239 (13)1.15346 (17)0.20368 (9)0.0470 (4)
C10.42829 (17)0.5545 (2)0.18849 (12)0.0317 (5)
C20.34817 (16)0.5205 (2)0.23424 (11)0.0317 (5)
C30.35206 (18)0.3940 (2)0.27068 (12)0.0397 (6)
H30.40590.33310.26580.048*
C40.27714 (19)0.3576 (2)0.31399 (13)0.0437 (6)
H40.28030.27280.33810.052*
C50.19776 (19)0.4482 (3)0.32114 (13)0.0443 (6)
H50.14670.42360.34980.053*
C60.19281 (19)0.5752 (2)0.28641 (13)0.0424 (6)
H60.13930.63600.29240.051*
C70.26729 (18)0.6122 (2)0.24268 (12)0.0354 (5)
C80.2383 (2)0.8580 (2)0.23870 (13)0.0436 (6)
H8A0.27830.86720.28710.052*
H8B0.16560.85630.24480.052*
C90.26014 (17)0.9778 (2)0.19023 (12)0.0380 (6)
H9A0.26531.06140.21970.046*
H9B0.32660.96290.17310.046*
C100.18136 (17)0.9098 (2)0.06069 (12)0.0354 (5)
H10A0.11650.92360.02910.042*
H10B0.18320.81430.07690.042*
C110.26861 (17)0.9320 (2)0.01498 (13)0.0393 (6)
H11A0.24650.90670.03600.047*
H11B0.28881.02850.01650.047*
C120.42882 (17)0.8148 (2)0.00178 (12)0.0351 (5)
C130.43787 (18)0.8787 (3)0.06523 (13)0.0429 (6)
H130.39090.94670.08330.052*
C140.51633 (19)0.8415 (3)0.10495 (14)0.0473 (7)
H140.52110.88370.15010.057*
C150.58800 (19)0.7424 (3)0.07867 (14)0.0470 (7)
H150.64130.71900.10550.056*
C160.57964 (18)0.6787 (2)0.01234 (13)0.0413 (6)
H160.62780.61190.00540.050*
C170.50033 (16)0.7125 (2)0.02867 (12)0.0323 (5)
C180.49498 (16)0.6389 (2)0.09783 (12)0.0320 (5)
C190.11113 (16)1.2493 (2)0.07299 (12)0.0329 (5)
C200.09314 (19)1.2366 (2)0.00310 (13)0.0418 (6)
H200.06871.15370.02440.050*
C210.1115 (2)1.3470 (3)0.04719 (14)0.0483 (7)
H210.09931.33780.09830.058*
C220.14769 (19)1.4715 (2)0.01674 (15)0.0450 (6)
C230.16432 (19)1.4821 (2)0.05905 (15)0.0491 (7)
H230.18831.56510.08040.059*
C240.14638 (18)1.3728 (2)0.10435 (14)0.0425 (6)
H240.15801.38250.15540.051*
C250.1681 (3)1.5912 (3)0.06588 (18)0.0734 (9)
H25A0.13361.67210.05110.110*
H25B0.14251.56920.11620.110*
H25C0.24111.60820.06160.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (3)0.0310 (3)0.0389 (3)0.0016 (2)0.0070 (2)0.0041 (3)
N10.0330 (12)0.0535 (13)0.0413 (12)0.0021 (10)0.0018 (9)0.0105 (10)
N20.0297 (11)0.0533 (13)0.0470 (12)0.0021 (9)0.0046 (9)0.0092 (11)
N30.0369 (11)0.0369 (11)0.0345 (11)0.0112 (9)0.0032 (8)0.0079 (9)
O10.0283 (8)0.0425 (9)0.0338 (9)0.0033 (7)0.0068 (7)0.0083 (7)
O20.0724 (12)0.0332 (9)0.0422 (10)0.0133 (8)0.0241 (9)0.0074 (8)
O30.0427 (10)0.0574 (11)0.0379 (9)0.0199 (8)0.0143 (8)0.0123 (8)
O40.0284 (8)0.0413 (9)0.0558 (10)0.0063 (7)0.0069 (7)0.0041 (8)
O50.0565 (11)0.0475 (10)0.0388 (10)0.0057 (8)0.0130 (8)0.0086 (8)
C10.0338 (13)0.0307 (12)0.0296 (12)0.0003 (10)0.0005 (10)0.0015 (10)
C20.0346 (13)0.0328 (12)0.0268 (12)0.0005 (10)0.0011 (10)0.0009 (10)
C30.0420 (14)0.0397 (13)0.0370 (14)0.0039 (11)0.0042 (11)0.0031 (12)
C40.0531 (16)0.0376 (13)0.0414 (14)0.0006 (12)0.0099 (12)0.0082 (12)
C50.0472 (15)0.0469 (15)0.0415 (14)0.0025 (12)0.0163 (12)0.0051 (12)
C60.0444 (14)0.0436 (15)0.0415 (14)0.0086 (11)0.0144 (12)0.0017 (12)
C70.0447 (14)0.0359 (13)0.0261 (12)0.0028 (11)0.0065 (10)0.0017 (10)
C80.0556 (16)0.0386 (14)0.0376 (14)0.0100 (12)0.0100 (12)0.0022 (11)
C90.0374 (13)0.0351 (13)0.0394 (14)0.0019 (10)0.0033 (11)0.0012 (11)
C100.0348 (13)0.0323 (12)0.0382 (13)0.0060 (10)0.0013 (10)0.0053 (11)
C110.0410 (14)0.0378 (13)0.0382 (13)0.0092 (11)0.0019 (11)0.0056 (11)
C120.0318 (13)0.0421 (14)0.0323 (13)0.0005 (11)0.0079 (10)0.0021 (11)
C130.0377 (14)0.0531 (16)0.0382 (14)0.0018 (12)0.0060 (11)0.0086 (12)
C140.0455 (16)0.0631 (17)0.0344 (14)0.0098 (13)0.0097 (12)0.0043 (13)
C150.0371 (14)0.0630 (17)0.0436 (15)0.0064 (13)0.0159 (12)0.0067 (14)
C160.0343 (14)0.0472 (15)0.0436 (15)0.0004 (11)0.0098 (11)0.0036 (12)
C170.0282 (12)0.0350 (12)0.0339 (13)0.0025 (10)0.0054 (10)0.0024 (10)
C180.0254 (12)0.0338 (12)0.0370 (13)0.0006 (10)0.0044 (10)0.0028 (10)
C190.0266 (12)0.0301 (12)0.0415 (14)0.0044 (9)0.0022 (10)0.0040 (11)
C200.0510 (15)0.0307 (13)0.0437 (15)0.0045 (11)0.0056 (12)0.0087 (12)
C210.0591 (17)0.0454 (15)0.0414 (15)0.0025 (13)0.0096 (13)0.0019 (13)
C220.0445 (15)0.0355 (14)0.0558 (17)0.0005 (11)0.0093 (12)0.0040 (13)
C230.0549 (17)0.0289 (13)0.0609 (18)0.0068 (12)0.0022 (13)0.0063 (13)
C240.0474 (15)0.0337 (14)0.0441 (15)0.0008 (11)0.0022 (12)0.0059 (12)
C250.094 (2)0.0480 (17)0.080 (2)0.0076 (16)0.0186 (19)0.0143 (16)
Geometric parameters (Å, º) top
S1—O51.4268 (16)C10—C111.512 (3)
S1—O41.4355 (16)C10—H10A0.9700
S1—N31.6227 (18)C10—H10B0.9700
S1—C191.765 (2)C11—H11A0.9700
N1—C11.292 (3)C11—H11B0.9700
N1—N21.410 (2)C12—C131.390 (3)
N2—C181.295 (3)C12—C171.405 (3)
N3—C91.467 (3)C13—C141.377 (3)
N3—C101.468 (3)C13—H130.9300
O1—C11.358 (2)C14—C151.381 (3)
O1—C181.359 (2)C14—H140.9300
O2—C71.370 (3)C15—C161.376 (3)
O2—C81.426 (3)C15—H150.9300
O3—C121.365 (2)C16—C171.393 (3)
O3—C111.439 (3)C16—H160.9300
C1—C21.458 (3)C17—C181.459 (3)
C2—C31.392 (3)C19—C241.379 (3)
C2—C71.403 (3)C19—C201.384 (3)
C3—C41.381 (3)C20—C211.378 (3)
C3—H30.9300C20—H200.9300
C4—C51.376 (3)C21—C221.384 (3)
C4—H40.9300C21—H210.9300
C5—C61.381 (3)C22—C231.377 (3)
C5—H50.9300C22—C251.510 (3)
C6—C71.383 (3)C23—C241.381 (3)
C6—H60.9300C23—H230.9300
C8—C91.508 (3)C24—H240.9300
C8—H8A0.9700C25—H25A0.9600
C8—H8B0.9700C25—H25B0.9600
C9—H9A0.9700C25—H25C0.9600
C9—H9B0.9700
O5—S1—O4119.22 (10)H10A—C10—H10B107.4
O5—S1—N3107.43 (10)O3—C11—C10108.23 (17)
O4—S1—N3108.21 (9)O3—C11—H11A110.1
O5—S1—C19108.71 (10)C10—C11—H11A110.1
O4—S1—C19105.52 (10)O3—C11—H11B110.1
N3—S1—C19107.21 (10)C10—C11—H11B110.1
C1—N1—N2106.20 (18)H11A—C11—H11B108.4
C18—N2—N1106.15 (17)O3—C12—C13123.8 (2)
C9—N3—C10119.84 (17)O3—C12—C17116.69 (19)
C9—N3—S1120.75 (15)C13—C12—C17119.5 (2)
C10—N3—S1119.07 (14)C14—C13—C12120.1 (2)
C1—O1—C18103.30 (16)C14—C13—H13120.0
C7—O2—C8118.99 (17)C12—C13—H13120.0
C12—O3—C11119.08 (17)C13—C14—C15121.0 (2)
N1—C1—O1112.27 (18)C13—C14—H14119.5
N1—C1—C2128.1 (2)C15—C14—H14119.5
O1—C1—C2119.65 (18)C16—C15—C14119.3 (2)
C3—C2—C7119.0 (2)C16—C15—H15120.3
C3—C2—C1119.2 (2)C14—C15—H15120.3
C7—C2—C1121.7 (2)C15—C16—C17121.2 (2)
C4—C3—C2120.9 (2)C15—C16—H16119.4
C4—C3—H3119.5C17—C16—H16119.4
C2—C3—H3119.5C16—C17—C12118.9 (2)
C5—C4—C3119.3 (2)C16—C17—C18118.3 (2)
C5—C4—H4120.4C12—C17—C18122.82 (19)
C3—C4—H4120.4N2—C18—O1112.08 (19)
C4—C5—C6121.0 (2)N2—C18—C17127.8 (2)
C4—C5—H5119.5O1—C18—C17120.08 (19)
C6—C5—H5119.5C24—C19—C20119.8 (2)
C5—C6—C7120.1 (2)C24—C19—S1120.53 (18)
C5—C6—H6120.0C20—C19—S1119.62 (17)
C7—C6—H6120.0C21—C20—C19119.9 (2)
O2—C7—C6123.7 (2)C21—C20—H20120.1
O2—C7—C2116.57 (19)C19—C20—H20120.1
C6—C7—C2119.7 (2)C20—C21—C22121.1 (2)
O2—C8—C9108.12 (18)C20—C21—H21119.4
O2—C8—H8A110.1C22—C21—H21119.4
C9—C8—H8A110.1C23—C22—C21118.0 (2)
O2—C8—H8B110.1C23—C22—C25121.6 (2)
C9—C8—H8B110.1C21—C22—C25120.4 (2)
H8A—C8—H8B108.4C22—C23—C24121.9 (2)
N3—C9—C8114.2 (2)C22—C23—H23119.1
N3—C9—H9A108.7C24—C23—H23119.1
C8—C9—H9A108.7C19—C24—C23119.3 (2)
N3—C9—H9B108.7C19—C24—H24120.4
C8—C9—H9B108.7C23—C24—H24120.4
H9A—C9—H9B107.6C22—C25—H25A109.5
N3—C10—C11116.19 (19)C22—C25—H25B109.5
N3—C10—H10A108.2H25A—C25—H25B109.5
C11—C10—H10A108.2C22—C25—H25C109.5
N3—C10—H10B108.2H25A—C25—H25C109.5
C11—C10—H10B108.2H25B—C25—H25C109.5
C1—N1—N2—C180.1 (2)C11—O3—C12—C17168.81 (19)
O5—S1—N3—C97.8 (2)O3—C12—C13—C14178.8 (2)
O4—S1—N3—C9137.76 (17)C17—C12—C13—C140.2 (3)
C19—S1—N3—C9108.86 (18)C12—C13—C14—C151.1 (4)
O5—S1—N3—C10165.50 (16)C13—C14—C15—C161.0 (4)
O4—S1—N3—C1035.56 (19)C14—C15—C16—C170.1 (4)
C19—S1—N3—C1077.82 (18)C15—C16—C17—C120.8 (3)
N2—N1—C1—O10.2 (2)C15—C16—C17—C18178.9 (2)
N2—N1—C1—C2179.1 (2)O3—C12—C17—C16178.0 (2)
C18—O1—C1—N10.4 (2)C13—C12—C17—C160.8 (3)
C18—O1—C1—C2179.42 (19)O3—C12—C17—C182.3 (3)
N1—C1—C2—C334.2 (3)C13—C12—C17—C18178.9 (2)
O1—C1—C2—C3144.6 (2)N1—N2—C18—O10.4 (2)
N1—C1—C2—C7145.6 (2)N1—N2—C18—C17179.5 (2)
O1—C1—C2—C735.6 (3)C1—O1—C18—N20.5 (2)
C7—C2—C3—C40.7 (3)C1—O1—C18—C17179.69 (19)
C1—C2—C3—C4179.5 (2)C16—C17—C18—N223.2 (3)
C2—C3—C4—C50.1 (4)C12—C17—C18—N2157.1 (2)
C3—C4—C5—C60.8 (4)C16—C17—C18—O1155.8 (2)
C4—C5—C6—C71.1 (4)C12—C17—C18—O123.8 (3)
C8—O2—C7—C641.7 (3)O5—S1—C19—C2410.7 (2)
C8—O2—C7—C2140.3 (2)O4—S1—C19—C24139.72 (18)
C5—C6—C7—O2177.4 (2)N3—S1—C19—C24105.10 (19)
C5—C6—C7—C20.5 (3)O5—S1—C19—C20168.80 (18)
C3—C2—C7—O2178.5 (2)O4—S1—C19—C2039.8 (2)
C1—C2—C7—O21.7 (3)N3—S1—C19—C2075.4 (2)
C3—C2—C7—C60.4 (3)C24—C19—C20—C210.6 (3)
C1—C2—C7—C6179.8 (2)S1—C19—C20—C21179.84 (19)
C7—O2—C8—C9170.55 (19)C19—C20—C21—C220.1 (4)
C10—N3—C9—C878.4 (3)C20—C21—C22—C230.4 (4)
S1—N3—C9—C894.9 (2)C20—C21—C22—C25179.6 (2)
O2—C8—C9—N378.3 (2)C21—C22—C23—C240.3 (4)
C9—N3—C10—C1170.9 (3)C25—C22—C23—C24179.6 (2)
S1—N3—C10—C11115.71 (19)C20—C19—C24—C230.7 (3)
C12—O3—C11—C10159.53 (19)S1—C19—C24—C23179.78 (18)
N3—C10—C11—O387.7 (2)C22—C23—C24—C190.2 (4)
C11—O3—C12—C1312.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O4i0.972.523.424 (3)154
C20—H20···O4i0.932.393.314 (3)173
C5—H5···O4ii0.932.513.253 (3)137
Symmetry codes: (i) x, y+2, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H23N3O5S
Mr477.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)13.0474 (19), 9.6809 (14), 18.261 (3)
β (°) 97.479 (3)
V3)2286.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12599, 4656, 2878
Rint0.044
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.01
No. of reflections4656
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.33

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O4i0.972.523.424 (3)154.2
C20—H20···O4i0.932.393.314 (3)172.8
C5—H5···O4ii0.932.513.253 (3)136.6
Symmetry codes: (i) x, y+2, z; (ii) x, y1/2, z+1/2.
 

Footnotes

Additional contact author, e-mail: chlsx@263.net.

Acknowledgements

This work was supported by the NSFC of Hebei Province (No. B2009000670), the Foundation of the Education Department of Hebei Province and the Foundation of Hebei University of Science & Technology (No. XL200746), which are gratefully acknowledged.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, D. M., Hua, W. T. & Jin, X. L. (2001). J. Mol. Struct. 561, 145–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, D. M., Hua, W. T., Wang, Z. M. & Yan, C. H. (2001). Heteroat. Chem. 12, 480–484.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. P. D., Fox, D. B., Huxley, A. J. M. & Moody, T. S. (2000). Coord. Chem. Rev. 205, 41–57.  Google Scholar
First citationTong, A. J., Song, Y. S., Li, L. D., Hayashita, T., Teramae, N., Park, C. & Bartsch, R. A. (2000). Ana. Chim. Acta, 420, 57–64.  Web of Science CrossRef CAS Google Scholar
First citationValeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3–40.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds