organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[4,4′-(Perfluoro­propane-2,2-di­yl)bis­­(4,1-phenyl­ene­oxy)]dianiline

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 12 May 2009; accepted 26 May 2009; online 6 June 2009)

In the title compound, C27H20F6N2O2, the dihedral angles between the planes of the aromatic rings connected by the ether O atoms are 84.13 (8) and 75.06 (9)°. The crystal structure is stabilized by N—H⋯O and N—H⋯F hydrogen bonds.

Related literature

For background to the properties and applications of polyimides, see: Jiang et al. (2008[Jiang, W., Wang, D., Guan, S., Gao, H., Zhao, Y., Jiang, Z., Gao, W., Zhang, D. & Zhang, D. (2008). J. Photochem. Photobiol. A Chem. 197, 426-433.]); Matsuura et al. (1991[Matsuura, T., Hasuda, Y., Nishi, S. & Yamada, N. (1991). Macromolecules, 24, 5001-5004.]); Nakamura et al. (2001[Nakamura, K., Ando, S. & Takeichi, T. (2001). Polymer, 42, 4045-4049.]); Stoessel et al. (1998[Stoessel, S., Takeichi, T. & Stille, J. K. (1998). J. Polym. Sci. Polym. Chem. 36, 1947-1951.]); Zhao et al. (2008[Zhao, X., Liu, J., Yang, H., Fan, L. & Yang, S. (2008). Eur. Polym. J. 44, 808-820.]). For related structures, see: Nawaz et al. (2008[Nawaz, H., Akhter, Z., Bolte, M., Butt, M. S. & Siddiqi, H. M. (2008). Acta Cryst. E64, o1537.]); Bocelli & Cantoni (1989[Bocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1660-1661.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20F6N2O2

  • Mr = 518.45

  • Orthorhombic, P c a 21

  • a = 11.6914 (12) Å

  • b = 25.641 (2) Å

  • c = 7.7625 (7) Å

  • V = 2327.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.28 × 0.13 × 0.08 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 8855 measured reflections

  • 2875 independent reflections

  • 2186 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 0.92

  • 2875 reflections

  • 351 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F1i 1.03 (5) 2.41 (5) 3.404 (4) 164 (4)
N1—H1B⋯O1ii 0.92 (3) 2.24 (4) 3.083 (3) 151 (3)
N2—H2B⋯F2iii 0.86 (9) 3.12 (8) 3.462 (4) 106 (7)
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [x-{\script{1\over 2}}, -y+2, z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyimides are well known for their excellent thermal and oxidative stability as well as their excellent mechanical properties (Stoessel et al., 1998) suited for use as matrix resins, adhesives and coatings for high-performance applications in the aerospace and electronics industries (Nakamura et al., 2001). These advantages simultaneously give rise to low solubility and poor processability, which can be overcome by incorporation of new functional groups (Matsuura et al., 1991). Many chemists have introduced CF3 in polyimides backbone either by means of diamine or dianhydride unit to overcome the solubility issues (Zhao et al., 2008; Jiang et al., 2008). Continuing our investigations in this important area (Nawaz et al., 2008), we have prepared the title compound, (I), which is also a monomer diamine containing two CF3 groups incorporated to enhance the solubility of the resulting polyimides.

The structure of the title compound is presented in Fig. 1. Its bond lenghts and bond angles agree with the corresponding bond lengths and bond angles reported for closely related structures (Nawaz et al., 2008; Bocelli & Cantoni, 1989. The crystal structure of the title compound is stabilized by N—H···O and N—H···F hydrogen bonds; details have been provided in Table 1.

Related literature top

For background to the properties and applications of polyimides, see: Jiang et al. (2008); Matsuura et al. (1991); Nakamura et al. (2001); Stoessel et al. (1998); Zhao et al. (2008). For related structures, see: Nawaz et al. (2008); Bocelli & Cantoni (1989).

Experimental top

4,4'-(Perfluoropropane-2,2-diyl)bis((4-nitrophenoxy)benzene) (2.00 g, 3.98 mmol) was reduced to corresponding diamine using 10 mL hydrazine and 0.10 g Pd—C as catalyst in 80 mL ethanol under reflux for 24 h. The reaction mixture was filtered and solvent was evaporated to obtain the crude product. It was later recrystallized from absolute ethanol. (Yield 1.56 g; 76%, m.p = 428 (2) K).

Refinement top

In the absence of anomalous scatterers, Friedel pairs (1848) were merged prior to refinement. All H atoms could be located by difference Fourier synthesis. Those bonded to C were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H = 0.95 Å. The H atoms bonded to N were refined isotropically.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level.
4,4'-[4,4'-(Perfluoropropane-2,2-diyl)bis(4,1-phenyleneoxy)]dianiline top
Crystal data top
C27H20F6N2O2Dx = 1.480 Mg m3
Mr = 518.45Melting point: 428(2) K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6984 reflections
a = 11.6914 (12) Åθ = 2.4–27.8°
b = 25.641 (2) ŵ = 0.13 mm1
c = 7.7625 (7) ÅT = 173 K
V = 2327.0 (4) Å3Plate, colourless
Z = 40.28 × 0.13 × 0.08 mm
F(000) = 1064
Data collection top
Stoe IPDSII two-circle
diffractometer
2186 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.6°, θmin = 3.0°
ω scansh = 1415
8855 measured reflectionsk = 3133
2875 independent reflectionsl = 710
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
2875 reflectionsΔρmax = 0.20 e Å3
351 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0185 (15)
Crystal data top
C27H20F6N2O2V = 2327.0 (4) Å3
Mr = 518.45Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.6914 (12) ŵ = 0.13 mm1
b = 25.641 (2) ÅT = 173 K
c = 7.7625 (7) Å0.28 × 0.13 × 0.08 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
2186 reflections with I > 2σ(I)
8855 measured reflectionsRint = 0.053
2875 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.20 e Å3
2875 reflectionsΔρmin = 0.18 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 &gt; σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51023 (15)0.60137 (7)0.7563 (3)0.0351 (4)
O20.3320 (2)0.94336 (7)0.4375 (3)0.0535 (6)
N10.2707 (2)0.41299 (10)0.7968 (4)0.0497 (7)
H1A0.294 (4)0.3848 (16)0.709 (8)0.092 (14)*
H1B0.194 (3)0.4165 (13)0.818 (5)0.055 (10)*
N20.3956 (4)1.14019 (12)0.1429 (6)0.0689 (10)
H2A0.476 (5)1.151 (2)0.154 (9)0.112 (19)*
H2B0.351 (7)1.149 (3)0.059 (14)0.19 (4)*
C10.4885 (2)0.74565 (9)0.1928 (4)0.0310 (5)
C20.6084 (2)0.74418 (10)0.1076 (4)0.0362 (6)
C30.3992 (2)0.73222 (11)0.0522 (4)0.0359 (6)
F10.64236 (14)0.69487 (6)0.0771 (3)0.0469 (4)
F20.68741 (13)0.76594 (7)0.2095 (3)0.0481 (4)
F30.61416 (15)0.76919 (6)0.0438 (2)0.0451 (4)
F40.29427 (12)0.72737 (6)0.1216 (2)0.0419 (4)
F50.39137 (15)0.76959 (6)0.0682 (2)0.0456 (4)
F60.42137 (14)0.68753 (6)0.0311 (2)0.0443 (4)
C110.4892 (2)0.70497 (9)0.3394 (3)0.0300 (5)
C120.4286 (2)0.65785 (10)0.3360 (4)0.0344 (6)
H120.38320.64970.23820.041*
C130.4334 (2)0.62297 (10)0.4718 (4)0.0338 (6)
H130.39080.59140.46700.041*
C140.5001 (2)0.63392 (10)0.6149 (4)0.0312 (5)
C150.5622 (2)0.68025 (10)0.6214 (4)0.0337 (5)
H150.60910.68780.71820.040*
C160.5553 (2)0.71515 (10)0.4866 (4)0.0333 (5)
H160.59650.74700.49350.040*
C210.4462 (2)0.55454 (9)0.7554 (4)0.0324 (5)
C220.4912 (2)0.51051 (10)0.6797 (4)0.0350 (6)
H220.56220.51200.62050.042*
C230.4310 (2)0.46357 (10)0.6910 (4)0.0368 (6)
H230.46150.43310.63890.044*
C240.3270 (2)0.46080 (10)0.7774 (4)0.0353 (6)
C250.2831 (2)0.50635 (10)0.8518 (4)0.0352 (6)
H250.21190.50520.91040.042*
C260.3422 (2)0.55313 (10)0.8411 (4)0.0346 (6)
H260.31180.58390.89190.042*
C310.4565 (2)0.80045 (10)0.2600 (4)0.0328 (5)
C320.4944 (2)0.84636 (10)0.1832 (4)0.0398 (6)
H320.54760.84460.09080.048*
C330.4555 (3)0.89490 (10)0.2398 (4)0.0433 (7)
H330.48310.92600.18760.052*
C340.3765 (3)0.89754 (11)0.3727 (4)0.0400 (6)
C350.3361 (2)0.85234 (11)0.4487 (4)0.0424 (7)
H350.28080.85410.53810.051*
C360.3769 (2)0.80464 (11)0.3932 (4)0.0372 (6)
H360.34990.77380.44730.045*
C410.3554 (3)0.99075 (10)0.3522 (4)0.0415 (7)
C420.2705 (3)1.01213 (11)0.2503 (4)0.0463 (7)
H420.20210.99320.22900.056*
C430.2852 (3)1.06081 (11)0.1800 (5)0.0475 (7)
H430.22641.07540.11070.057*
C440.3851 (3)1.08902 (11)0.2087 (5)0.0465 (7)
C450.4708 (3)1.06653 (12)0.3094 (4)0.0468 (8)
H450.54011.08500.32870.056*
C460.4560 (3)1.01741 (12)0.3816 (4)0.0449 (7)
H460.51451.00240.45050.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0375 (9)0.0326 (9)0.0351 (10)0.0058 (7)0.0020 (8)0.0054 (8)
O20.0792 (15)0.0282 (10)0.0530 (14)0.0055 (10)0.0246 (12)0.0000 (10)
N10.0423 (14)0.0346 (12)0.072 (2)0.0096 (11)0.0017 (13)0.0036 (13)
N20.086 (2)0.0347 (14)0.086 (3)0.0048 (15)0.023 (2)0.0115 (15)
C10.0305 (12)0.0283 (12)0.0343 (13)0.0002 (9)0.0009 (11)0.0001 (12)
C20.0378 (13)0.0338 (13)0.0371 (14)0.0017 (11)0.0025 (12)0.0031 (13)
C30.0374 (13)0.0331 (14)0.0373 (14)0.0044 (11)0.0001 (12)0.0043 (12)
F10.0455 (9)0.0371 (8)0.0581 (11)0.0115 (7)0.0114 (8)0.0019 (8)
F20.0327 (8)0.0585 (11)0.0532 (10)0.0074 (7)0.0024 (8)0.0000 (9)
F30.0476 (9)0.0453 (9)0.0424 (9)0.0053 (7)0.0136 (8)0.0067 (8)
F40.0317 (7)0.0452 (9)0.0489 (10)0.0001 (6)0.0052 (8)0.0057 (8)
F50.0510 (10)0.0442 (9)0.0416 (10)0.0014 (7)0.0083 (8)0.0118 (8)
F60.0540 (10)0.0379 (8)0.0409 (9)0.0024 (7)0.0053 (8)0.0070 (8)
C110.0305 (11)0.0263 (12)0.0333 (14)0.0002 (9)0.0006 (11)0.0016 (11)
C120.0351 (12)0.0307 (13)0.0374 (15)0.0018 (10)0.0062 (11)0.0007 (12)
C130.0337 (13)0.0286 (12)0.0392 (15)0.0045 (11)0.0032 (12)0.0020 (12)
C140.0305 (11)0.0292 (12)0.0339 (13)0.0020 (10)0.0017 (11)0.0030 (11)
C150.0344 (12)0.0325 (13)0.0342 (13)0.0036 (10)0.0009 (12)0.0026 (11)
C160.0359 (13)0.0277 (11)0.0364 (14)0.0029 (10)0.0019 (12)0.0021 (11)
C210.0324 (12)0.0298 (12)0.0349 (14)0.0020 (10)0.0028 (11)0.0051 (11)
C220.0338 (12)0.0374 (14)0.0339 (14)0.0034 (10)0.0034 (11)0.0018 (12)
C230.0385 (13)0.0310 (12)0.0410 (15)0.0042 (11)0.0003 (12)0.0007 (13)
C240.0331 (12)0.0325 (13)0.0404 (15)0.0033 (11)0.0067 (12)0.0045 (12)
C250.0304 (12)0.0370 (13)0.0383 (15)0.0001 (10)0.0031 (12)0.0028 (12)
C260.0348 (12)0.0323 (13)0.0368 (15)0.0029 (11)0.0025 (11)0.0028 (12)
C310.0324 (12)0.0303 (12)0.0357 (14)0.0001 (10)0.0019 (11)0.0026 (12)
C320.0472 (14)0.0330 (13)0.0393 (15)0.0003 (11)0.0110 (13)0.0012 (13)
C330.0589 (17)0.0275 (13)0.0435 (17)0.0018 (12)0.0133 (15)0.0013 (12)
C340.0516 (16)0.0305 (13)0.0379 (15)0.0050 (12)0.0073 (14)0.0039 (12)
C350.0427 (15)0.0374 (15)0.0472 (17)0.0011 (12)0.0141 (14)0.0002 (14)
C360.0361 (13)0.0310 (13)0.0446 (16)0.0005 (11)0.0089 (12)0.0022 (12)
C410.0557 (16)0.0294 (13)0.0393 (16)0.0005 (12)0.0093 (14)0.0019 (13)
C420.0504 (17)0.0419 (15)0.0466 (18)0.0015 (13)0.0028 (15)0.0074 (14)
C430.0514 (17)0.0450 (16)0.0460 (18)0.0069 (13)0.0021 (15)0.0023 (15)
C440.0630 (18)0.0306 (13)0.0460 (17)0.0040 (13)0.0134 (16)0.0006 (14)
C450.0468 (16)0.0398 (15)0.054 (2)0.0033 (13)0.0049 (14)0.0118 (14)
C460.0455 (15)0.0452 (16)0.0438 (17)0.0068 (13)0.0022 (14)0.0042 (14)
Geometric parameters (Å, º) top
O1—C141.384 (3)C21—C221.377 (4)
O1—C211.415 (3)C21—C261.386 (4)
O2—C341.380 (3)C22—C231.397 (4)
O2—C411.411 (3)C22—H220.9500
N1—C241.400 (3)C23—C241.390 (4)
N1—H1A1.03 (5)C23—H230.9500
N1—H1B0.92 (3)C24—C251.400 (4)
N2—C441.413 (4)C25—C261.387 (4)
N2—H2A0.99 (6)C25—H250.9500
N2—H2B0.86 (9)C26—H260.9500
C1—C111.544 (3)C31—C321.392 (4)
C1—C311.545 (3)C31—C361.396 (4)
C1—C31.548 (4)C32—C331.396 (4)
C1—C21.551 (3)C32—H320.9500
C2—F21.338 (3)C33—C341.386 (4)
C2—F31.340 (3)C33—H330.9500
C2—F11.346 (3)C34—C351.384 (4)
C3—F61.341 (3)C35—C361.382 (4)
C3—F51.342 (3)C35—H350.9500
C3—F41.346 (3)C36—H360.9500
C11—C121.401 (3)C41—C461.379 (4)
C11—C161.404 (4)C41—C421.383 (5)
C12—C131.384 (4)C42—C431.373 (4)
C12—H120.9500C42—H420.9500
C13—C141.386 (4)C43—C441.391 (4)
C13—H130.9500C43—H430.9500
C14—C151.393 (3)C44—C451.396 (5)
C15—C161.379 (4)C45—C461.390 (4)
C15—H150.9500C45—H450.9500
C16—H160.9500C46—H460.9500
C14—O1—C21117.6 (2)C23—C22—H22120.4
C34—O2—C41119.3 (2)C24—C23—C22121.0 (2)
C24—N1—H1A115 (3)C24—C23—H23119.5
C24—N1—H1B113 (2)C22—C23—H23119.5
H1A—N1—H1B116 (3)C23—C24—N1120.5 (3)
C44—N2—H2A108 (3)C23—C24—C25118.5 (2)
C44—N2—H2B118 (5)N1—C24—C25120.9 (3)
H2A—N2—H2B124 (6)C26—C25—C24121.0 (2)
C11—C1—C31111.5 (2)C26—C25—H25119.5
C11—C1—C3111.9 (2)C24—C25—H25119.5
C31—C1—C3106.1 (2)C21—C26—C25119.2 (2)
C11—C1—C2107.1 (2)C21—C26—H26120.4
C31—C1—C2112.6 (2)C25—C26—H26120.4
C3—C1—C2107.7 (2)C32—C31—C36117.7 (2)
F2—C2—F3106.5 (2)C32—C31—C1123.2 (2)
F2—C2—F1107.0 (2)C36—C31—C1118.8 (2)
F3—C2—F1106.3 (2)C31—C32—C33121.0 (3)
F2—C2—C1111.2 (2)C31—C32—H32119.5
F3—C2—C1114.0 (2)C33—C32—H32119.5
F1—C2—C1111.4 (2)C34—C33—C32119.7 (3)
F6—C3—F5106.7 (2)C34—C33—H33120.2
F6—C3—F4106.9 (2)C32—C33—H33120.2
F5—C3—F4106.4 (2)O2—C34—C35115.4 (3)
F6—C3—C1113.6 (2)O2—C34—C33124.3 (3)
F5—C3—C1112.2 (2)C35—C34—C33120.2 (3)
F4—C3—C1110.7 (2)C36—C35—C34119.4 (3)
C12—C11—C16117.0 (2)C36—C35—H35120.3
C12—C11—C1124.5 (2)C34—C35—H35120.3
C16—C11—C1118.5 (2)C35—C36—C31122.0 (3)
C13—C12—C11121.5 (2)C35—C36—H36119.0
C13—C12—H12119.3C31—C36—H36119.0
C11—C12—H12119.3C46—C41—C42120.7 (3)
C12—C13—C14120.2 (2)C46—C41—O2121.0 (3)
C12—C13—H13119.9C42—C41—O2118.1 (3)
C14—C13—H13119.9C43—C42—C41119.9 (3)
O1—C14—C13124.2 (2)C43—C42—H42120.1
O1—C14—C15116.2 (2)C41—C42—H42120.1
C13—C14—C15119.7 (2)C42—C43—C44120.9 (3)
C16—C15—C14119.7 (3)C42—C43—H43119.5
C16—C15—H15120.2C44—C43—H43119.5
C14—C15—H15120.2C43—C44—C45118.5 (3)
C15—C16—C11122.0 (2)C43—C44—N2119.8 (3)
C15—C16—H16119.0C45—C44—N2121.6 (3)
C11—C16—H16119.0C46—C45—C44120.7 (3)
C22—C21—C26121.2 (2)C46—C45—H45119.6
C22—C21—O1119.7 (2)C44—C45—H45119.6
C26—C21—O1118.9 (2)C41—C46—C45119.3 (3)
C21—C22—C23119.1 (2)C41—C46—H46120.4
C21—C22—H22120.4C45—C46—H46120.4
C11—C1—C2—F272.8 (3)O1—C21—C22—C23175.2 (3)
C31—C1—C2—F250.2 (3)C21—C22—C23—C240.1 (4)
C3—C1—C2—F2166.8 (2)C22—C23—C24—N1176.2 (3)
C11—C1—C2—F3166.8 (2)C22—C23—C24—C250.6 (4)
C31—C1—C2—F370.3 (3)C23—C24—C25—C260.6 (4)
C3—C1—C2—F346.3 (3)N1—C24—C25—C26176.2 (3)
C11—C1—C2—F146.5 (3)C22—C21—C26—C250.6 (4)
C31—C1—C2—F1169.4 (2)O1—C21—C26—C25175.2 (3)
C3—C1—C2—F174.0 (3)C24—C25—C26—C210.0 (4)
C11—C1—C3—F664.1 (3)C11—C1—C31—C32151.6 (3)
C31—C1—C3—F6174.1 (2)C3—C1—C31—C3286.4 (3)
C2—C1—C3—F653.3 (3)C2—C1—C31—C3231.2 (4)
C11—C1—C3—F5174.8 (2)C11—C1—C31—C3635.1 (3)
C31—C1—C3—F552.9 (3)C3—C1—C31—C3687.0 (3)
C2—C1—C3—F567.9 (3)C2—C1—C31—C36155.4 (3)
C11—C1—C3—F456.1 (3)C36—C31—C32—C331.1 (4)
C31—C1—C3—F465.7 (3)C1—C31—C32—C33174.6 (3)
C2—C1—C3—F4173.5 (2)C31—C32—C33—C341.1 (5)
C31—C1—C11—C12127.0 (3)C41—O2—C34—C35171.0 (3)
C3—C1—C11—C128.3 (3)C41—O2—C34—C338.4 (5)
C2—C1—C11—C12109.4 (3)C32—C33—C34—O2179.5 (3)
C31—C1—C11—C1653.5 (3)C32—C33—C34—C350.2 (5)
C3—C1—C11—C16172.2 (2)O2—C34—C35—C36179.3 (3)
C2—C1—C11—C1670.1 (3)C33—C34—C35—C361.3 (5)
C16—C11—C12—C130.2 (4)C34—C35—C36—C311.2 (5)
C1—C11—C12—C13179.7 (2)C32—C31—C36—C350.0 (4)
C11—C12—C13—C140.7 (4)C1—C31—C36—C35173.7 (3)
C21—O1—C14—C131.5 (4)C34—O2—C41—C4683.0 (4)
C21—O1—C14—C15178.6 (2)C34—O2—C41—C42102.7 (3)
C12—C13—C14—O1179.9 (2)C46—C41—C42—C431.2 (5)
C12—C13—C14—C150.1 (4)O2—C41—C42—C43173.1 (3)
O1—C14—C15—C16179.0 (2)C41—C42—C43—C440.4 (5)
C13—C14—C15—C161.0 (4)C42—C43—C44—C450.7 (5)
C14—C15—C16—C111.6 (4)C42—C43—C44—N2176.5 (3)
C12—C11—C16—C150.9 (4)C43—C44—C45—C461.0 (5)
C1—C11—C16—C15178.6 (2)N2—C44—C45—C46176.1 (3)
C14—O1—C21—C2287.0 (3)C42—C41—C46—C450.8 (5)
C14—O1—C21—C2697.2 (3)O2—C41—C46—C45173.3 (3)
C26—C21—C22—C230.5 (4)C44—C45—C46—C410.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F1i1.03 (5)2.41 (5)3.404 (4)164 (4)
N1—H1B···O1ii0.92 (3)2.24 (4)3.083 (3)151 (3)
N2—H2B···F2iii0.86 (9)3.12 (8)3.462 (4)106 (7)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x1/2, y+1, z; (iii) x1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC27H20F6N2O2
Mr518.45
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)11.6914 (12), 25.641 (2), 7.7625 (7)
V3)2327.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.28 × 0.13 × 0.08
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8855, 2875, 2186
Rint0.053
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 0.92
No. of reflections2875
No. of parameters351
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F1i1.03 (5)2.41 (5)3.404 (4)164 (4)
N1—H1B···O1ii0.92 (3)2.24 (4)3.083 (3)151 (3)
N2—H2B···F2iii0.86 (9)3.12 (8)3.462 (4)106 (7)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x1/2, y+1, z; (iii) x1/2, y+2, z.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, and the Higher Education Commission, H-9 Islamabad, Pakistan, for financial support and the Institute for Inorganic Chemistry, University of Frankfurt, Germany for providing laboratory and analytical facilities.

References

First citationBocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1660–1661.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, W., Wang, D., Guan, S., Gao, H., Zhao, Y., Jiang, Z., Gao, W., Zhang, D. & Zhang, D. (2008). J. Photochem. Photobiol. A Chem. 197, 426–433.  Web of Science CrossRef CAS Google Scholar
First citationMatsuura, T., Hasuda, Y., Nishi, S. & Yamada, N. (1991). Macromolecules, 24, 5001-5004.  CrossRef CAS Web of Science Google Scholar
First citationNakamura, K., Ando, S. & Takeichi, T. (2001). Polymer, 42, 4045–4049.  Web of Science CrossRef CAS Google Scholar
First citationNawaz, H., Akhter, Z., Bolte, M., Butt, M. S. & Siddiqi, H. M. (2008). Acta Cryst. E64, o1537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoessel, S., Takeichi, T. & Stille, J. K. (1998). J. Polym. Sci. Polym. Chem. 36, 1947-1951.  Google Scholar
First citationZhao, X., Liu, J., Yang, H., Fan, L. & Yang, S. (2008). Eur. Polym. J. 44, 808–820.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds