organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1173

Acridinium 3,5-di­carb­oxy­benzoate monohydrate

aFaculty of Science, Department of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, bFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: zderik@yahoo.com

(Received 13 April 2009; accepted 25 April 2009; online 30 April 2009)

The title compound, C13H10N+·C9H5O6·H2O, exhibits a wide range of non-covalent inter­actions, such as O—H⋯O and N—H⋯O hydrogen bonds, ππ stacking [centroid-centroid distances = 3.562 (8) and 3.872 (8) Å] and ion pairing, connecting the various components into a supra­molecular structure.

Related literature

For background to proton transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); (Tabatabaee et al. 2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]). For related structures, see: Zadykowicz, Trzybiński et al. (2009[Zadykowicz, B., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o566-o567.]); Zadykowicz, Krzymiński et al. (2009[Zadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o768-o769.]); Trzybiński et al. (2009[Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770-o771.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N+·C9H5O6·H2O

  • Mr = 407.37

  • Triclinic, [P \overline 1]

  • a = 6.8554 (4) Å

  • b = 9.6930 (6) Å

  • c = 14.8916 (10) Å

  • α = 103.6870 (10)°

  • β = 101.4240 (10)°

  • γ = 103.3100 (10)°

  • V = 901.62 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 9138 measured reflections

  • 4275 independent reflections

  • 3659 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.01

  • 4275 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.88 1.76 2.6403 (14) 174
O3—H3O⋯O4i 0.91 1.73 2.6370 (15) 174
O5—H5O⋯O7ii 0.90 1.77 2.6412 (14) 165
O7—H7B⋯O1 0.88 1.85 2.7197 (14) 172
O7—H7C⋯O2iii 0.88 1.94 2.7989 (15) 167
Symmetry codes: (i) -x+2, -y, -z; (ii) -x, -y+1, -z; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acridine is structurally related to anthracene wherein one of the central CH groups is replaced by nitrogen. It is a raw material used for the production of dyes and some valuable drugs. Our research group has reported the first proton transfer complex with acridine (Tabatabaee et al., 2009). We have also reported many proton transfer compounds with various donor and acceptor fragments; further details and related literature has been presented in a review article (Aghabozorg et al., 2008). In this article, we report the crystal structure of a proton transfer system containing acridine and benzene tricarboxylic acid.

The title structure contains a cation, an anion and a water molecule in an asymmetric unit (Fig. 1). The crystal structure shows that one of the protons of carboxylic groups has been transferred to nitrogen atom of the acridine molecule. Noncovalent interactions cause the structure to form a self-assembled system. A hydrogen bonded motif involving anion and cation fragments and water molecules linked to each other into one-dimensional chains is presented in Fig. 2; details of O–H···O and N–H···O hydrogen bonds are shown in Table 1. In addition, the interactions consisting of ion-pairing, ππ stacking [with centroid-centroid distances = 3.562 (8) and 3.872 (8) Å] between two cations are also present (Fig. 3).

The crystal structures of several acridine derivatives have been reported recently (Zadykowicz, Trzybiński et al., 2009; Zadykowicz, Krzymiński et al., 2009; Trzybiński et al., 2009.

Related literature top

For background to proton transfer compounds, see: Aghabozorg et al. (2008); (Tabatabaee et al. 2009). For related structures, see: Zadykowicz, Trzybiński et al. (2009); Zadykowicz, Krzymiński et al. (2009); Trzybiński et al. (2009).

Experimental top

The reaction between solution benzene tricarboxylic acid (10 mg, 1 mmol) in 10 ml water and acridine (89 mg, 2 mmol) in 10 ml me thanol in 1:2 molar ratios gave brown prism crystals after slow evaporation of the solvent at room temperature.

Refinement top

All the H atoms bonded to C and N atoms were included in the refinements at idealized positions in riding motion approximation. The H atoms of the hydroxyl group and water of hydration were taken from a difference map and were not allowed to refine. The following constraints were used: Caryl—H = 0.95 and N—H = 0.98 Å, Uiso(H) = 1.5Ueq(O water) and 1.2Ueq(the rest of the parent atoms).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. One-dimensional chain that formed by hydrogen bonds between cationic and anionic fragments and water molecules.
[Figure 3] Fig. 3. ππ Stacking interactions between cationic fragments in the title compound.
Acridinium 3,5-dicarboxybenzoate monohydrate top
Crystal data top
C13H10N+·C9H5O6·H2OZ = 2
Mr = 407.37F(000) = 424
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8554 (4) ÅCell parameters from 5147 reflections
b = 9.6930 (6) Åθ = 2.3–30.0°
c = 14.8916 (10) ŵ = 0.11 mm1
α = 103.687 (1)°T = 120 K
β = 101.424 (1)°Prism, brown
γ = 103.310 (1)°0.25 × 0.20 × 0.15 mm
V = 901.62 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4275 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 99
Tmin = 0.971, Tmax = 0.980k = 1212
9138 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.08P)2 + 0.36P]
where P = (Fo2 + 2Fc2)/3
4275 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H10N+·C9H5O6·H2Oγ = 103.310 (1)°
Mr = 407.37V = 901.62 (10) Å3
Triclinic, P1Z = 2
a = 6.8554 (4) ÅMo Kα radiation
b = 9.6930 (6) ŵ = 0.11 mm1
c = 14.8916 (10) ÅT = 120 K
α = 103.687 (1)°0.25 × 0.20 × 0.15 mm
β = 101.424 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4275 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3659 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.018
9138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
4275 reflectionsΔρmin = 0.30 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53402 (13)0.57945 (10)0.27673 (6)0.0210 (2)
O20.84684 (14)0.54218 (10)0.30488 (6)0.0236 (2)
O30.76596 (15)0.03275 (10)0.06853 (6)0.0239 (2)
H3O0.85010.02680.07660.029*
O40.96967 (16)0.12545 (11)0.08194 (7)0.0283 (2)
O50.07764 (15)0.36662 (11)0.05679 (7)0.0247 (2)
H5O0.02070.36740.10610.030*
O60.16639 (16)0.20983 (12)0.16763 (7)0.0287 (2)
O70.16191 (15)0.62966 (12)0.21813 (7)0.0295 (2)
H7B0.27510.60540.23750.044*
H7C0.07650.59580.24990.044*
N10.68310 (16)0.81261 (11)0.43083 (7)0.0179 (2)
H1N0.64310.73520.37940.022*
C10.8239 (2)0.88639 (15)0.69373 (9)0.0240 (3)
H1A0.86690.96680.75100.029*
C20.7957 (2)0.74436 (16)0.69839 (9)0.0253 (3)
H2A0.81340.72620.75900.030*
C30.7401 (2)0.62373 (15)0.61357 (10)0.0241 (3)
H3A0.72530.52610.61840.029*
C40.70732 (19)0.64520 (14)0.52498 (9)0.0211 (3)
H4A0.67290.56370.46880.025*
C4A0.72531 (18)0.79041 (13)0.51809 (9)0.0181 (2)
C50.6491 (2)0.96360 (15)0.32571 (9)0.0225 (3)
H5A0.60040.87840.27110.027*
C60.6712 (2)1.10214 (16)0.31508 (10)0.0264 (3)
H6A0.63691.11250.25250.032*
C70.7447 (2)1.23140 (15)0.39604 (11)0.0266 (3)
H7A0.76071.32670.38690.032*
C80.7923 (2)1.21908 (14)0.48666 (10)0.0246 (3)
H8A0.84081.30580.54020.029*
C8A0.76947 (18)1.07638 (13)0.50154 (9)0.0197 (3)
C90.81271 (19)1.05643 (14)0.59263 (9)0.0214 (3)
H9A0.85871.14020.64810.026*
C9A0.78877 (18)0.91388 (14)0.60267 (9)0.0197 (3)
C10A0.69968 (19)0.94890 (14)0.41914 (9)0.0188 (2)
C100.60515 (18)0.40594 (13)0.15426 (8)0.0175 (2)
C110.73036 (19)0.31547 (13)0.13153 (9)0.0186 (2)
H11A0.85050.32200.17870.022*
C120.68132 (19)0.21555 (13)0.04031 (9)0.0180 (2)
C130.50674 (19)0.20648 (13)0.02982 (9)0.0185 (2)
H13A0.47460.14000.09250.022*
C140.37953 (18)0.29568 (13)0.00735 (8)0.0179 (2)
C150.42717 (18)0.39407 (13)0.08446 (9)0.0180 (2)
H15A0.33850.45320.09960.022*
C160.66843 (19)0.51724 (13)0.25273 (8)0.0182 (2)
C170.8191 (2)0.12108 (14)0.01994 (9)0.0197 (2)
C180.19722 (19)0.28509 (14)0.08559 (9)0.0197 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (4)0.0232 (4)0.0190 (4)0.0101 (3)0.0046 (3)0.0011 (3)
O20.0210 (4)0.0291 (5)0.0181 (4)0.0119 (4)0.0008 (3)0.0015 (4)
O30.0269 (5)0.0273 (5)0.0181 (4)0.0167 (4)0.0040 (4)0.0010 (4)
O40.0307 (5)0.0337 (5)0.0201 (5)0.0215 (4)0.0013 (4)0.0003 (4)
O50.0235 (5)0.0319 (5)0.0203 (4)0.0166 (4)0.0029 (4)0.0047 (4)
O60.0282 (5)0.0354 (5)0.0193 (5)0.0166 (4)0.0011 (4)0.0005 (4)
O70.0228 (5)0.0415 (6)0.0279 (5)0.0168 (4)0.0044 (4)0.0119 (4)
N10.0181 (5)0.0184 (5)0.0162 (5)0.0060 (4)0.0052 (4)0.0019 (4)
C10.0213 (6)0.0289 (6)0.0169 (6)0.0050 (5)0.0031 (5)0.0019 (5)
C20.0211 (6)0.0337 (7)0.0192 (6)0.0067 (5)0.0030 (5)0.0080 (5)
C30.0214 (6)0.0248 (6)0.0252 (6)0.0060 (5)0.0040 (5)0.0083 (5)
C40.0197 (6)0.0205 (6)0.0204 (6)0.0048 (4)0.0042 (5)0.0029 (5)
C4A0.0138 (5)0.0211 (6)0.0180 (6)0.0046 (4)0.0047 (4)0.0034 (4)
C50.0237 (6)0.0256 (6)0.0202 (6)0.0102 (5)0.0080 (5)0.0059 (5)
C60.0262 (7)0.0314 (7)0.0287 (7)0.0137 (5)0.0109 (5)0.0142 (6)
C70.0233 (6)0.0223 (6)0.0388 (8)0.0098 (5)0.0121 (6)0.0114 (6)
C80.0209 (6)0.0197 (6)0.0324 (7)0.0076 (5)0.0079 (5)0.0041 (5)
C8A0.0147 (5)0.0193 (6)0.0242 (6)0.0061 (4)0.0065 (4)0.0028 (5)
C90.0187 (6)0.0203 (6)0.0205 (6)0.0047 (4)0.0047 (5)0.0012 (5)
C9A0.0162 (6)0.0217 (6)0.0186 (6)0.0042 (4)0.0049 (4)0.0022 (5)
C10A0.0166 (5)0.0207 (6)0.0200 (6)0.0070 (4)0.0068 (4)0.0048 (5)
C100.0188 (6)0.0189 (5)0.0160 (5)0.0079 (4)0.0049 (4)0.0045 (4)
C110.0191 (6)0.0195 (6)0.0175 (5)0.0086 (4)0.0037 (4)0.0042 (4)
C120.0197 (6)0.0185 (5)0.0182 (6)0.0096 (4)0.0065 (4)0.0050 (4)
C130.0205 (6)0.0195 (5)0.0162 (5)0.0085 (4)0.0051 (4)0.0036 (4)
C140.0187 (5)0.0196 (6)0.0165 (5)0.0082 (4)0.0047 (4)0.0049 (4)
C150.0180 (6)0.0189 (5)0.0177 (5)0.0076 (4)0.0054 (4)0.0040 (4)
C160.0201 (6)0.0198 (5)0.0170 (5)0.0086 (4)0.0055 (4)0.0062 (4)
C170.0222 (6)0.0202 (6)0.0181 (6)0.0103 (5)0.0054 (5)0.0040 (4)
C180.0191 (6)0.0207 (6)0.0199 (6)0.0085 (4)0.0045 (4)0.0053 (4)
Geometric parameters (Å, º) top
O1—C161.2747 (15)C5—C10A1.4148 (17)
O2—C161.2474 (15)C5—H5A0.9500
O3—C171.3167 (15)C6—C71.425 (2)
O3—H3O0.9102C6—H6A0.9500
O4—C171.2261 (16)C7—C81.364 (2)
O5—C181.3258 (15)C7—H7A0.9500
O5—H5O0.8953C8—C8A1.4303 (18)
O6—C181.2143 (16)C8—H8A0.9500
O7—H7B0.8764C8A—C91.3988 (18)
O7—H7C0.8773C8A—C10A1.4280 (17)
N1—C4A1.3529 (16)C9—C9A1.4006 (18)
N1—C10A1.3550 (16)C9—H9A0.9500
N1—H1N0.8800C10—C111.3934 (16)
C1—C21.366 (2)C10—C151.3995 (17)
C1—C9A1.4280 (18)C10—C161.5120 (16)
C1—H1A0.9500C11—C121.3938 (16)
C2—C31.4188 (19)C11—H11A0.9500
C2—H2A0.9500C12—C131.3942 (17)
C3—C41.3668 (18)C12—C171.4844 (16)
C3—H3A0.9500C13—C141.3950 (16)
C4—C4A1.4144 (17)C13—H13A0.9500
C4—H4A0.9500C14—C151.3957 (17)
C4A—C9A1.4275 (17)C14—C181.4958 (17)
C5—C61.3667 (19)C15—H15A0.9500
C17—O3—H3O111.8C8A—C9—C9A120.49 (11)
C18—O5—H5O111.9C8A—C9—H9A119.8
H7B—O7—H7C105.4C9A—C9—H9A119.8
C4A—N1—C10A122.85 (11)C9—C9A—C4A118.55 (11)
C4A—N1—H1N118.6C9—C9A—C1122.95 (12)
C10A—N1—H1N118.6C4A—C9A—C1118.50 (12)
C2—C1—C9A119.94 (12)N1—C10A—C5119.81 (11)
C2—C1—H1A120.0N1—C10A—C8A119.46 (11)
C9A—C1—H1A120.0C5—C10A—C8A120.73 (12)
C1—C2—C3120.64 (12)C11—C10—C15119.08 (11)
C1—C2—H2A119.7C11—C10—C16119.12 (10)
C3—C2—H2A119.7C15—C10—C16121.77 (11)
C4—C3—C2121.31 (12)C10—C11—C12120.76 (11)
C4—C3—H3A119.3C10—C11—H11A119.6
C2—C3—H3A119.3C12—C11—H11A119.6
C3—C4—C4A119.08 (12)C13—C12—C11120.05 (11)
C3—C4—H4A120.5C13—C12—C17121.31 (11)
C4A—C4—H4A120.5C11—C12—C17118.63 (11)
N1—C4A—C4119.84 (11)C12—C13—C14119.52 (11)
N1—C4A—C9A119.77 (11)C12—C13—H13A120.2
C4—C4A—C9A120.39 (11)C14—C13—H13A120.2
C6—C5—C10A119.08 (12)C13—C14—C15120.32 (11)
C6—C5—H5A120.5C13—C14—C18117.62 (11)
C10A—C5—H5A120.5C15—C14—C18122.02 (11)
C5—C6—C7121.30 (13)C14—C15—C10120.23 (11)
C5—C6—H6A119.3C14—C15—H15A119.9
C7—C6—H6A119.3C10—C15—H15A119.9
C8—C7—C6120.37 (12)O2—C16—O1124.40 (11)
C8—C7—H7A119.8O2—C16—C10118.44 (11)
C6—C7—H7A119.8O1—C16—C10117.17 (10)
C7—C8—C8A120.42 (12)O4—C17—O3123.27 (11)
C7—C8—H8A119.8O4—C17—C12121.71 (11)
C8A—C8—H8A119.8O3—C17—C12115.01 (10)
C9—C8A—C10A118.83 (11)O6—C18—O5124.18 (11)
C9—C8A—C8123.08 (12)O6—C18—C14122.11 (11)
C10A—C8A—C8118.09 (12)O5—C18—C14113.70 (11)
C9A—C1—C2—C32.7 (2)C8—C8A—C10A—N1177.85 (10)
C1—C2—C3—C41.9 (2)C9—C8A—C10A—C5178.37 (11)
C2—C3—C4—C4A1.30 (19)C8—C8A—C10A—C51.77 (18)
C10A—N1—C4A—C4179.17 (11)C15—C10—C11—C120.76 (18)
C10A—N1—C4A—C9A0.52 (18)C16—C10—C11—C12177.54 (11)
C3—C4—C4A—N1176.65 (11)C10—C11—C12—C130.80 (19)
C3—C4—C4A—C9A3.66 (18)C10—C11—C12—C17179.65 (11)
C10A—C5—C6—C70.2 (2)C11—C12—C13—C141.38 (18)
C5—C6—C7—C80.9 (2)C17—C12—C13—C14179.08 (11)
C6—C7—C8—C8A0.2 (2)C12—C13—C14—C150.41 (18)
C7—C8—C8A—C9179.04 (12)C12—C13—C14—C18178.41 (11)
C7—C8—C8A—C10A1.11 (18)C13—C14—C15—C101.15 (18)
C10A—C8A—C9—C9A0.28 (18)C18—C14—C15—C10176.75 (11)
C8—C8A—C9—C9A179.57 (11)C11—C10—C15—C141.73 (18)
C8A—C9—C9A—C4A1.79 (18)C16—C10—C15—C14176.53 (11)
C8A—C9—C9A—C1177.87 (11)C11—C10—C16—O211.75 (17)
N1—C4A—C9A—C92.23 (17)C15—C10—C16—O2166.50 (11)
C4—C4A—C9A—C9177.46 (11)C11—C10—C16—O1168.22 (11)
N1—C4A—C9A—C1177.44 (11)C15—C10—C16—O113.52 (17)
C4—C4A—C9A—C12.87 (18)C13—C12—C17—O4177.96 (12)
C2—C1—C9A—C9179.34 (12)C11—C12—C17—O42.49 (19)
C2—C1—C9A—C4A0.32 (19)C13—C12—C17—O31.45 (17)
C4A—N1—C10A—C5178.76 (11)C11—C12—C17—O3178.10 (11)
C4A—N1—C10A—C8A1.62 (18)C13—C14—C18—O64.89 (18)
C6—C5—C10A—N1178.51 (11)C15—C14—C18—O6173.07 (12)
C6—C5—C10A—C8A1.10 (19)C13—C14—C18—O5176.13 (11)
C9—C8A—C10A—N12.01 (17)C15—C14—C18—O55.91 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.881.762.6403 (14)174
O3—H3O···O4i0.911.732.6370 (15)174
O5—H5O···O7ii0.901.772.6412 (14)165
O7—H7B···O10.881.852.7197 (14)172
O7—H7C···O2iii0.881.942.7989 (15)167
Symmetry codes: (i) x+2, y, z; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10N+·C9H5O6·H2O
Mr407.37
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.8554 (4), 9.6930 (6), 14.8916 (10)
α, β, γ (°)103.687 (1), 101.424 (1), 103.310 (1)
V3)901.62 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9138, 4275, 3659
Rint0.018
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.01
No. of reflections4275
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.881.762.6403 (14)174
O3—H3O···O4i0.911.732.6370 (15)174
O5—H5O···O7ii0.901.772.6412 (14)165
O7—H7B···O10.881.852.7197 (14)172
O7—H7C···O2iii0.881.942.7989 (15)167
Symmetry codes: (i) x+2, y, z; (ii) x, y+1, z; (iii) x1, y, z.
 

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZadykowicz, B., Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o768–o769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZadykowicz, B., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o566–o567.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1173
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds