organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Adamant­yl)-6-methyl-3-(3-methyl­benz­yl)isochroman-1-one

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 6 April 2009; accepted 28 April 2009; online 7 May 2009)

In the title compound, C28H32O2, the oxanone ring adopts distorted half-boat conformation with the following Cremer and Pople puckering parameters: Q = 0.619 (2) Å, θ = 0.75 (19) and φ = 172 (13)°. The dihedral angle betwen two benzene rings is 21.32 (7)°. The adamantane unit consists of three fused cyclo­hexane rings in classical chair conformations, with absolute values of C—C—C—C torsion angles in the range 57.5 (2)–60.9 (2)°. Weak inter­actions of the type C—H⋯O link mol­ecules of each enanti­omer into chains parallel to the b axis and lying about inversion centers. The crystal packing is also stabilized by inter­molecular π-π stacking inter­actions [centroid–centroid distance of 3.8566 (11) Å].

Related literature

For related structure and the preparation method, see: Vícha et al. (2006[Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709-722.]). For the biological activity of related compounds, see: Buntin et al. (2008[Buntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. 47, 4595-4599.]); Bianchi et al. (2004[Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923-1927.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32O2

  • Mr = 400.54

  • Monoclinic, C 2/c

  • a = 25.691 (5) Å

  • b = 6.8474 (14) Å

  • c = 24.465 (5) Å

  • β = 95.62 (3)°

  • V = 4283.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.928, Tmax = 0.976

  • 24394 measured reflections

  • 3768 independent reflections

  • 2791 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 1.09

  • 3768 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O2i 0.95 2.65 3.548 (3) 157
C12—H12B⋯O2i 0.99 2.28 3.206 (2) 156
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title molecule is related to the isochromanone derivatives that are generally known as regulators of plant growth (Bianchi et al., 2004). In the dependence on their chemical structure and concentration they can act either as inhibitors or stimulators in these processes. Some substituted isochromanones isolated from myxobacteria strains were introduced as antifungal agents (Buntin et al., 2008).

The structure of the title compound (Fig. 1) consists of two essentially planar benzene rings with the maximum deviations from the best planes of 0.0046 (18) Å for atom C18 (benzene ring C13-C18) and 0.0115 (2) Å for atom C22 (benzyl group). The carbonyl plane (C18/C19/O1/O2) is also planar with the maximum deviation being 0.0073 (2) Å for atom C19. The dihedral angles between two benzene rings and between carbonyl plane and adjacent benzene ring are 21.32 (7) and 12.56 (6)°, respectively. The oxanone ring adopts distorted half-boat conformation with the torsion angles C12–C13–C18–C19, O1–C19–C18–C13 and C11–C12–C13–C18 being -2.3 (3), -10.8 (3) and 32.4 (2)°, respectively. The puckering parameters (Cremer & Pople, 1975) for the oxanone ring are Q = 0.619 (2) Å, θ = 0.75 (19)° and ϕ = 172 (13)°. The torsion angles describing alignment of adamantane cage and benzyl group C12–C11–C1–C2 and C12–C11–C21–C22 are 50.8 (2) and -69.7 (2)°, respectively. The adamantane cage consists of three fused cyclohexane rings in classical chair conformation, with absolute values of C–C–C–C torsion angles within the range 57.5 (2)-60.9 (2)°. The molecules of each enantiomer are linked via C23–H23A···O2 and C12–H12B···O2 weak interactions into chains parallel to the b-axis and lying about inversion centers (Table 1 and Fig. 2). The packing of the crystal is stabilized by intermolecular π-π stacking of isochromanone rings with the centroid-to-centroid (Cg: C13–C18) distance being 3.8566 (11) Å.

Related literature top

For related structure and the preparation method, see: Vícha et al. (2006). For the biological activity of related compounds, see: Buntin et al. (2008); Bianchi et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by the reaction of 3-methylbenzylmagnesium chloride with adamantane-1-carbonyl chloride in diethyl ether (Vícha et al., 2006). A solution of 3-methylbenzylmagnesium chloride (5 ml, 0.030 mol) in diethyl ether was added to a well stirred solution of adamantane-1-carbonyl chloride (0.8858 g, 0.004 mol) in 5 ml of dry diethyl ether at 273 K. The mixture was stirred for 72 h at room temperature and the reaction mixture was quenched with 15 ml of HCl (1 M). After additional 15 min of vigorous stirring, the aqueous layer was separated and washed three times with 15 ml of diethyl ether. Combined organic layers were washed with K2CO3 (1.16 M), dried over Na2SO4 and evaporated in vacuum. Crude product was purified on column (silica gel; petroleum ether/ethyl acetate, v/v, 16/1). The title compound was obtained as a colorless crystalline powder (350 mg, 41%), melting point 447–448 K). Crystals suitable for X-ray analysis were acquired by spontaneous evaporation from deuterochloroform at 298 K.

Refinement top

Hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL (Sheldrick, 2008) facilities, with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of their parent atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) of the asymmetric unit with atoms represented as 50% probability ellipsoids and H atoms shown as small spheres at arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the title compound showing chains paralel to the b-axis linked via C—H···O weak interactions (dotted lines). H-atoms have been omitted to enhance clarity (except those which are involved in H-bonding).
3-(1-Adamantyl)-6-methyl-3-(3-methylbenzyl)isochroman-1-one top
Crystal data top
C28H32O2F(000) = 1728
Mr = 400.54Dx = 1.242 Mg m3
Monoclinic, C2/cMelting point: 448(1) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.691 (5) ÅCell parameters from 3768 reflections
b = 6.8474 (14) Åθ = 3.1–25.0°
c = 24.465 (5) ŵ = 0.08 mm1
β = 95.62 (3)°T = 120 K
V = 4283.1 (15) Å3Block, colourless
Z = 80.50 × 0.40 × 0.40 mm
Data collection top
Kuma KM-4-CCD
diffractometer
3768 independent reflections
Radiation source: fine-focus sealed tube2791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0.06 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 2630
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 88
Tmin = 0.928, Tmax = 0.976l = 2929
24394 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0809P)2 + 3.6011P]
where P = (Fo2 + 2Fc2)/3
3768 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C28H32O2V = 4283.1 (15) Å3
Mr = 400.54Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.691 (5) ŵ = 0.08 mm1
b = 6.8474 (14) ÅT = 120 K
c = 24.465 (5) Å0.50 × 0.40 × 0.40 mm
β = 95.62 (3)°
Data collection top
Kuma KM-4-CCD
diffractometer
3768 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2791 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.976Rint = 0.025
24394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.09Δρmax = 0.74 e Å3
3768 reflectionsΔρmin = 0.30 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12111 (5)0.58024 (19)0.42951 (5)0.0274 (3)
O20.10665 (6)0.8319 (2)0.48112 (6)0.0416 (4)
C10.12676 (7)0.3506 (3)0.35689 (7)0.0249 (4)
C20.07450 (8)0.4117 (4)0.32486 (8)0.0357 (5)
H2A0.04610.32730.33590.043*
H2B0.06630.54820.33420.043*
C30.07703 (8)0.3948 (4)0.26254 (8)0.0415 (6)
H3A0.04260.43470.24310.050*
C40.08847 (10)0.1837 (4)0.24825 (9)0.0508 (7)
H4A0.08990.17070.20810.061*
H4B0.06030.09780.25920.061*
C50.14076 (10)0.1229 (3)0.27842 (9)0.0424 (6)
H5A0.14840.01530.26870.051*
C60.18356 (9)0.2548 (4)0.26050 (9)0.0406 (6)
H6A0.18520.24250.22040.049*
H6B0.21780.21490.27920.049*
C70.17210 (8)0.4660 (3)0.27493 (8)0.0337 (5)
H7A0.20050.55230.26340.040*
C80.16969 (8)0.4845 (3)0.33713 (8)0.0299 (5)
H8A0.16230.62190.34640.036*
H8B0.20400.44860.35650.036*
C90.11992 (9)0.5274 (4)0.24478 (8)0.0395 (5)
H9A0.11230.66490.25360.047*
H9B0.12150.51680.20460.047*
C100.13864 (9)0.1386 (3)0.34079 (8)0.0351 (5)
H10A0.17260.09720.36000.042*
H10B0.11110.05060.35230.042*
C110.12507 (7)0.3690 (3)0.42072 (7)0.0245 (4)
C120.07750 (8)0.2678 (3)0.44128 (7)0.0255 (4)
H12A0.04630.29450.41520.031*
H12B0.08340.12490.44190.031*
C130.06683 (7)0.3338 (3)0.49754 (7)0.0240 (4)
C140.04511 (7)0.2122 (3)0.53459 (7)0.0265 (4)
H14A0.03680.08120.52430.032*
C150.03512 (7)0.2773 (3)0.58642 (7)0.0286 (5)
C160.04774 (8)0.4696 (3)0.60077 (8)0.0302 (5)
H16A0.04140.51650.63610.036*
C170.06931 (8)0.5930 (3)0.56449 (8)0.0294 (5)
H17A0.07780.72380.57490.035*
C180.07859 (7)0.5254 (3)0.51267 (7)0.0247 (4)
C190.10280 (8)0.6571 (3)0.47482 (8)0.0276 (5)
C200.01153 (9)0.1436 (3)0.62600 (8)0.0383 (5)
H20A0.02370.00980.62090.057*
H20B0.02670.14800.61930.057*
H20C0.02220.18580.66370.057*
C210.17657 (8)0.2921 (3)0.45125 (8)0.0326 (5)
H21A0.17630.14790.44850.039*
H21B0.20590.33970.43140.039*
C220.18831 (8)0.3455 (3)0.51107 (8)0.0298 (5)
C230.17789 (8)0.2147 (3)0.55169 (8)0.0313 (5)
H23A0.16400.09000.54150.038*
C240.18731 (8)0.2613 (3)0.60726 (8)0.0353 (5)
C250.20832 (8)0.4433 (4)0.62145 (8)0.0389 (5)
H25A0.21450.47850.65910.047*
C260.22031 (8)0.5736 (4)0.58156 (9)0.0392 (5)
H26A0.23540.69650.59180.047*
C270.21027 (8)0.5250 (3)0.52660 (8)0.0353 (5)
H27A0.21850.61530.49920.042*
C280.17439 (10)0.1205 (4)0.64983 (10)0.0515 (7)
H28A0.17860.01290.63650.077*
H28B0.13810.14030.65780.077*
H28C0.19790.14100.68340.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (8)0.0251 (7)0.0238 (7)0.0011 (6)0.0060 (6)0.0008 (5)
O20.0616 (11)0.0269 (9)0.0376 (9)0.0005 (7)0.0125 (7)0.0030 (6)
C10.0240 (10)0.0316 (11)0.0193 (9)0.0020 (8)0.0032 (7)0.0006 (8)
C20.0255 (11)0.0581 (15)0.0236 (10)0.0035 (10)0.0027 (8)0.0044 (9)
C30.0251 (12)0.0774 (17)0.0216 (10)0.0017 (11)0.0003 (8)0.0049 (10)
C40.0537 (16)0.0751 (18)0.0243 (11)0.0294 (14)0.0074 (10)0.0101 (11)
C50.0597 (16)0.0416 (13)0.0274 (11)0.0029 (11)0.0122 (10)0.0102 (9)
C60.0399 (13)0.0588 (15)0.0246 (10)0.0040 (11)0.0101 (9)0.0027 (10)
C70.0276 (11)0.0465 (13)0.0278 (10)0.0056 (9)0.0062 (8)0.0019 (9)
C80.0280 (11)0.0364 (12)0.0252 (10)0.0040 (9)0.0020 (8)0.0001 (8)
C90.0425 (14)0.0534 (14)0.0225 (10)0.0030 (11)0.0033 (9)0.0047 (9)
C100.0432 (13)0.0369 (12)0.0259 (10)0.0020 (10)0.0077 (9)0.0039 (9)
C110.0276 (11)0.0243 (10)0.0219 (10)0.0040 (8)0.0039 (8)0.0024 (7)
C120.0315 (11)0.0231 (10)0.0222 (9)0.0002 (8)0.0039 (8)0.0001 (7)
C130.0203 (10)0.0281 (10)0.0231 (9)0.0063 (8)0.0004 (7)0.0012 (8)
C140.0252 (11)0.0285 (10)0.0259 (10)0.0014 (8)0.0027 (8)0.0001 (8)
C150.0227 (11)0.0398 (12)0.0234 (10)0.0039 (8)0.0035 (8)0.0025 (8)
C160.0266 (11)0.0427 (12)0.0218 (9)0.0082 (9)0.0053 (8)0.0026 (8)
C170.0312 (11)0.0291 (11)0.0280 (10)0.0050 (8)0.0038 (8)0.0047 (8)
C180.0227 (10)0.0273 (10)0.0240 (9)0.0068 (8)0.0024 (8)0.0012 (8)
C190.0326 (12)0.0259 (11)0.0243 (10)0.0052 (8)0.0025 (8)0.0028 (8)
C200.0385 (13)0.0475 (14)0.0303 (11)0.0021 (10)0.0101 (9)0.0037 (9)
C210.0308 (12)0.0465 (13)0.0202 (10)0.0108 (9)0.0009 (8)0.0025 (9)
C220.0234 (11)0.0434 (12)0.0224 (10)0.0099 (9)0.0018 (8)0.0003 (9)
C230.0235 (11)0.0400 (12)0.0302 (11)0.0094 (9)0.0013 (8)0.0025 (9)
C240.0272 (11)0.0541 (14)0.0254 (10)0.0145 (10)0.0064 (8)0.0055 (9)
C250.0307 (12)0.0591 (15)0.0262 (11)0.0079 (10)0.0007 (9)0.0088 (10)
C260.0296 (12)0.0514 (14)0.0357 (12)0.0026 (10)0.0019 (9)0.0097 (10)
C270.0279 (12)0.0465 (13)0.0313 (11)0.0013 (9)0.0012 (9)0.0000 (9)
C280.0539 (16)0.0593 (16)0.0423 (14)0.0055 (13)0.0102 (11)0.0120 (12)
Geometric parameters (Å, º) top
O1—C191.353 (2)C12—H12A0.9900
O1—C111.467 (2)C12—H12B0.9900
O2—C191.209 (2)C13—C141.388 (3)
C1—C101.542 (3)C13—C181.388 (3)
C1—C21.544 (3)C14—C151.391 (3)
C1—C81.548 (3)C14—H14A0.9500
C1—C111.572 (2)C15—C161.393 (3)
C2—C31.537 (3)C15—C201.503 (3)
C2—H2A0.9900C16—C171.381 (3)
C2—H2B0.9900C16—H16A0.9500
C3—C41.523 (4)C17—C181.392 (3)
C3—C91.524 (3)C17—H17A0.9500
C3—H3A1.0000C18—C191.474 (3)
C4—C51.526 (4)C20—H20A0.9800
C4—H4A0.9900C20—H20B0.9800
C4—H4B0.9900C20—H20C0.9800
C5—C61.520 (3)C21—C221.510 (3)
C5—C101.536 (3)C21—H21A0.9900
C5—H5A1.0000C21—H21B0.9900
C6—C71.525 (3)C22—C231.383 (3)
C6—H6A0.9900C22—C271.390 (3)
C6—H6B0.9900C23—C241.394 (3)
C7—C91.524 (3)C23—H23A0.9500
C7—C81.534 (3)C24—C251.389 (3)
C7—H7A1.0000C24—C281.481 (3)
C8—H8A0.9900C25—C261.379 (3)
C8—H8B0.9900C25—H25A0.9500
C9—H9A0.9900C26—C271.385 (3)
C9—H9B0.9900C26—H26A0.9500
C10—H10A0.9900C27—H27A0.9500
C10—H10B0.9900C28—H28A0.9800
C11—C121.532 (3)C28—H28B0.9800
C11—C211.547 (3)C28—H28C0.9800
C12—C131.500 (2)
C19—O1—C11122.58 (14)C12—C11—C1112.97 (15)
C10—C1—C2108.02 (16)C21—C11—C1110.29 (15)
C10—C1—C8108.25 (16)C13—C12—C11112.85 (15)
C2—C1—C8106.96 (16)C13—C12—H12A109.0
C10—C1—C11110.79 (15)C11—C12—H12A109.0
C2—C1—C11112.03 (15)C13—C12—H12B109.0
C8—C1—C11110.63 (15)C11—C12—H12B109.0
C3—C2—C1111.34 (17)H12A—C12—H12B107.8
C3—C2—H2A109.4C14—C13—C18118.94 (17)
C1—C2—H2A109.4C14—C13—C12122.69 (17)
C3—C2—H2B109.4C18—C13—C12118.37 (17)
C1—C2—H2B109.4C13—C14—C15121.66 (18)
H2A—C2—H2B108.0C13—C14—H14A119.2
C4—C3—C9109.82 (19)C15—C14—H14A119.2
C4—C3—C2109.08 (19)C14—C15—C16118.26 (18)
C9—C3—C2109.89 (18)C14—C15—C20120.94 (19)
C4—C3—H3A109.3C16—C15—C20120.80 (18)
C9—C3—H3A109.3C17—C16—C15120.99 (18)
C2—C3—H3A109.3C17—C16—H16A119.5
C3—C4—C5109.19 (18)C15—C16—H16A119.5
C3—C4—H4A109.8C16—C17—C18119.81 (18)
C5—C4—H4A109.8C16—C17—H17A120.1
C3—C4—H4B109.8C18—C17—H17A120.1
C5—C4—H4B109.8C13—C18—C17120.34 (18)
H4A—C4—H4B108.3C13—C18—C19120.35 (16)
C6—C5—C4109.0 (2)C17—C18—C19119.28 (17)
C6—C5—C10109.99 (18)O2—C19—O1117.32 (18)
C4—C5—C10110.25 (19)O2—C19—C18124.05 (18)
C6—C5—H5A109.2O1—C19—C18118.61 (16)
C4—C5—H5A109.2C15—C20—H20A109.5
C10—C5—H5A109.2C15—C20—H20B109.5
C5—C6—C7109.59 (18)H20A—C20—H20B109.5
C5—C6—H6A109.8C15—C20—H20C109.5
C7—C6—H6A109.8H20A—C20—H20C109.5
C5—C6—H6B109.8H20B—C20—H20C109.5
C7—C6—H6B109.8C22—C21—C11117.76 (16)
H6A—C6—H6B108.2C22—C21—H21A107.9
C9—C7—C6109.28 (18)C11—C21—H21A107.9
C9—C7—C8109.76 (17)C22—C21—H21B107.9
C6—C7—C8109.59 (17)C11—C21—H21B107.9
C9—C7—H7A109.4H21A—C21—H21B107.2
C6—C7—H7A109.4C23—C22—C27118.57 (18)
C8—C7—H7A109.4C23—C22—C21120.35 (19)
C7—C8—C1111.10 (16)C27—C22—C21121.08 (18)
C7—C8—H8A109.4C22—C23—C24121.7 (2)
C1—C8—H8A109.4C22—C23—H23A119.2
C7—C8—H8B109.4C24—C23—H23A119.2
C1—C8—H8B109.4C25—C24—C23118.4 (2)
H8A—C8—H8B108.0C25—C24—C28121.1 (2)
C3—C9—C7108.92 (18)C23—C24—C28120.5 (2)
C3—C9—H9A109.9C26—C25—C24120.80 (19)
C7—C9—H9A109.9C26—C25—H25A119.6
C3—C9—H9B109.9C24—C25—H25A119.6
C7—C9—H9B109.9C25—C26—C27119.9 (2)
H9A—C9—H9B108.3C25—C26—H26A120.1
C5—C10—C1110.29 (17)C27—C26—H26A120.1
C5—C10—H10A109.6C26—C27—C22120.7 (2)
C1—C10—H10A109.6C26—C27—H27A119.7
C5—C10—H10B109.6C22—C27—H27A119.7
C1—C10—H10B109.6C24—C28—H28A109.5
H10A—C10—H10B108.1C24—C28—H28B109.5
O1—C11—C12109.21 (15)H28A—C28—H28B109.5
O1—C11—C21109.47 (15)C24—C28—H28C109.5
C12—C11—C21111.07 (16)H28A—C28—H28C109.5
O1—C11—C1103.53 (14)H28B—C28—H28C109.5
C10—C1—C2—C358.3 (2)O1—C11—C12—C1348.1 (2)
C8—C1—C2—C358.0 (2)C21—C11—C12—C1372.7 (2)
C11—C1—C2—C3179.39 (18)C1—C11—C12—C13162.74 (15)
C1—C2—C3—C460.2 (2)C11—C12—C13—C14148.46 (17)
C1—C2—C3—C960.2 (3)C11—C12—C13—C1832.4 (2)
C9—C3—C4—C560.5 (2)C18—C13—C14—C150.3 (3)
C2—C3—C4—C560.0 (2)C12—C13—C14—C15179.42 (17)
C3—C4—C5—C660.2 (2)C13—C14—C15—C160.3 (3)
C3—C4—C5—C1060.6 (2)C13—C14—C15—C20179.94 (18)
C4—C5—C6—C760.6 (2)C14—C15—C16—C170.4 (3)
C10—C5—C6—C760.4 (2)C20—C15—C16—C17179.86 (18)
C5—C6—C7—C960.8 (2)C15—C16—C17—C180.1 (3)
C5—C6—C7—C859.5 (2)C14—C13—C18—C170.8 (3)
C9—C7—C8—C160.9 (2)C12—C13—C18—C17179.98 (17)
C6—C7—C8—C159.1 (2)C14—C13—C18—C19178.59 (16)
C10—C1—C8—C757.8 (2)C12—C13—C18—C192.3 (3)
C2—C1—C8—C758.3 (2)C16—C17—C18—C130.8 (3)
C11—C1—C8—C7179.39 (16)C16—C17—C18—C19178.54 (17)
C4—C3—C9—C760.3 (2)C11—O1—C19—O2171.77 (17)
C2—C3—C9—C759.7 (2)C11—O1—C19—C189.5 (3)
C6—C7—C9—C360.1 (2)C13—C18—C19—O2167.88 (19)
C8—C7—C9—C360.1 (2)C17—C18—C19—O214.3 (3)
C6—C5—C10—C160.3 (2)C13—C18—C19—O110.8 (3)
C4—C5—C10—C160.0 (2)C17—C18—C19—O1166.98 (17)
C2—C1—C10—C557.5 (2)O1—C11—C21—C2250.9 (2)
C8—C1—C10—C557.9 (2)C12—C11—C21—C2269.7 (2)
C11—C1—C10—C5179.40 (17)C1—C11—C21—C22164.23 (17)
C19—O1—C11—C1238.5 (2)C11—C21—C22—C2398.7 (2)
C19—O1—C11—C2183.3 (2)C11—C21—C22—C2782.1 (2)
C19—O1—C11—C1159.11 (15)C27—C22—C23—C242.1 (3)
C10—C1—C11—O1172.14 (15)C21—C22—C23—C24178.67 (18)
C2—C1—C11—O167.16 (19)C22—C23—C24—C250.8 (3)
C8—C1—C11—O152.08 (19)C22—C23—C24—C28178.27 (19)
C10—C1—C11—C1269.8 (2)C23—C24—C25—C261.0 (3)
C2—C1—C11—C1250.9 (2)C28—C24—C25—C26179.9 (2)
C8—C1—C11—C12170.09 (15)C24—C25—C26—C271.5 (3)
C10—C1—C11—C2155.1 (2)C25—C26—C27—C220.2 (3)
C2—C1—C11—C21175.81 (17)C23—C22—C27—C261.5 (3)
C8—C1—C11—C2164.9 (2)C21—C22—C27—C26179.21 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O2i0.952.653.548 (3)157
C12—H12B···O2i0.992.283.206 (2)156
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H32O2
Mr400.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)25.691 (5), 6.8474 (14), 24.465 (5)
β (°) 95.62 (3)
V3)4283.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.928, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
24394, 3768, 2791
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.151, 1.09
No. of reflections3768
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O2i0.952.653.548 (3)157
C12—H12B···O2i0.992.283.206 (2)156
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The financial support of this work by the Czech Ministry of Education (project No. MSM 7088352101) is gratefully acknowledged.

References

First citationBianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufnam, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBuntin, K., Rachid, S., Scharfe, M., Blöcker, H., Weissman, K. J. & Müller, R. (2008). Angew. Chem. Int. Ed. 47, 4595–4599.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds