metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-1κ4O6,O1,O1′,O6′:2κ4O1,N,N′,O1′}(methanol-1κO)(perchlorato-1κO)copper(II)sodium(I)

aDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China, and bCollege of Chemical Engineering and Materials, Heilongjiang University, Haerbin 150080, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 28 February 2009; accepted 20 March 2009; online 25 March 2009)

The mol­ecule of the title compound, [CuNa(C18H18N2O4)(ClO4)(CH3OH)], is almost planar with mean deviation of 5.2 (8)°. The coordination environment of the CuII ion is distorted square-planar and it is N2O2-chelated by the 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate Schiff base ligand. The Na atom is chelated by the four O atoms of the Schiff base ligand, and coordinated by a methanol mol­ecule and a perchlorate anion. The six-coordinate Na atom adopts a distorted octa­hedral coordination geometry. The O atoms of the perchlorate anion are disordered over two sites with site-occupancy factors of 0.697 (5) and 0.303 (5). O—H⋯O hydrogen bonding occurs.

Related literature

For chemical background, see: Lindoy et al. (1976[Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724-1727.]). For related structures, see: Correia et al. (2005[Correia, I., Pessoa, J. C., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(C18H18N2O4)(ClO4)(CH4O)]

  • Mr = 544.38

  • Monoclinic, P 21 /n

  • a = 12.030 (2) Å

  • b = 8.1444 (14) Å

  • c = 23.381 (4) Å

  • β = 104.273 (3)°

  • V = 2220.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 273 K

  • 0.17 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.825, Tmax = 0.881

  • 10424 measured reflections

  • 3843 independent reflections

  • 2651 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.03

  • 3843 reflections

  • 339 parameters

  • 148 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O7i 0.82 2.11 2.912 (8) 164
O9—H9A⋯O5′i 0.82 1.99 2.761 (13) 156
O9—H9A⋯O5′i 0.82 1.99 2.761 (13) 156
O9—H9A⋯O7i 0.82 2.11 2.912 (8) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

The schiff bases have been known as effective ligands for metal ions and used in the mechanism of many biochemical processes (Lindoy et al., 1976). N,N-Disalicylideneethylenediamine type schiff bases present versatile steric, electronic and lipophilic properties. The synthesis, characterization and solution studies of N,N'-disalicylideneethylenediamine type complexes have been reported recently (Correia et al., 2005). We report here the synthesis and crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. The values of the geometric parameters in (I) are normal (Allen et al., 1987). Cu(II) and Na(I) are connected via two bridging oxygen atoms of the ligand. The coordination environment of the Cu2+ ion is distorted square-planar and it is coordinated by N2O2 of the Schiff base ligand. The Na atom is chelated by the four O atoms of the 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligand, a methanol and a perchlorate anion. The six-coordinate Na atom adopts a distorted octahedral coordination geometry.

Related literature top

For chemical background, see: Lindoy et al. (1976). For related structures, see: Correia et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and copper chloride (1 mmol) in absolute ethanol (15 ml) was stirred for 30 min and sodium perchlorate (1 mmol) was added, stirred for another 15 min and then filtered. The resulting clear orange solution was allowed to evaporate at room temperature for 7 days, after which large orange block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent atoms, with C—H distances 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms, respectively, and O—H = 0.85 Å. The H-atoms were allowed Uiso(H) = 1.2Ueq(parent aryl and methylene C atoms), or Uiso(H) = 1.5Ueq(methyl C and hydroxyl O atoms). The O-atoms of the perchlorate anion are disordered over two sites with unequal site occupancy factors 0.697 (5) and 0.303 (5).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O6,O1,O1',O6': 2κ4O1,N,N',O1'}(methanol-1κO)(perchlorato- 1κO)copper(II)sodium(I) top
Crystal data top
[CuNa(C18H18N2O4)(ClO4)(CH4O)]F(000) = 1116
Mr = 544.38Dx = 1.629 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2083 reflections
a = 12.030 (2) Åθ = 2.7–21.2°
b = 8.1444 (14) ŵ = 1.18 mm1
c = 23.381 (4) ÅT = 273 K
β = 104.273 (3)°Block, blue
V = 2220.1 (7) Å30.17 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3843 independent reflections
Radiation source: fine-focus sealed tube2651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1410
Tmin = 0.825, Tmax = 0.881k = 99
10424 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.3025P]
where P = (Fo2 + 2Fc2)/3
3843 reflections(Δ/σ)max = 0.002
339 parametersΔρmax = 0.56 e Å3
148 restraintsΔρmin = 0.68 e Å3
Crystal data top
[CuNa(C18H18N2O4)(ClO4)(CH4O)]V = 2220.1 (7) Å3
Mr = 544.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.030 (2) ŵ = 1.18 mm1
b = 8.1444 (14) ÅT = 273 K
c = 23.381 (4) Å0.17 × 0.15 × 0.11 mm
β = 104.273 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3843 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2651 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.881Rint = 0.039
10424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048148 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
3843 reflectionsΔρmin = 0.68 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.67526 (4)0.41736 (7)1.00850 (2)0.0401 (2)
Cl10.50250 (12)0.6363 (2)0.73548 (7)0.0739 (4)
Na10.64991 (14)0.4180 (2)0.86447 (7)0.0487 (5)
O10.7475 (2)0.5185 (4)0.95491 (12)0.0450 (7)
O20.5730 (2)0.3261 (4)0.94164 (12)0.0469 (8)
O30.8214 (3)0.6120 (4)0.86695 (14)0.0586 (9)
O40.4620 (3)0.2267 (4)0.83993 (13)0.0551 (8)
O50.4054 (5)0.7314 (9)0.7368 (3)0.0941 (18)0.697 (5)
O60.5622 (6)0.5794 (11)0.7907 (3)0.107 (2)0.697 (5)
O70.5660 (5)0.7560 (8)0.7127 (3)0.1002 (19)0.697 (5)
O80.4583 (6)0.5066 (8)0.6955 (3)0.121 (2)0.697 (5)
O5'0.5499 (13)0.648 (2)0.6860 (5)0.102 (3)0.303 (5)
O6'0.5809 (11)0.5076 (15)0.7574 (8)0.095 (3)0.303 (5)
O7'0.3899 (7)0.596 (2)0.7381 (8)0.106 (3)0.303 (5)
O8'0.5499 (14)0.683 (2)0.7956 (3)0.100 (3)0.303 (5)
O90.7367 (4)0.1937 (5)0.8355 (2)0.0792 (12)
H9A0.79050.19210.81980.119*
N10.7854 (3)0.4916 (5)1.07680 (15)0.0450 (9)
N20.5934 (3)0.3323 (5)1.06299 (15)0.0461 (9)
C10.9026 (4)0.6473 (5)1.0254 (2)0.0438 (11)
C20.8414 (3)0.6065 (5)0.9680 (2)0.0400 (10)
C30.8843 (4)0.6644 (5)0.92130 (19)0.0433 (11)
C40.9803 (4)0.7612 (6)0.9308 (2)0.0533 (12)
H41.00590.79970.89880.064*
C51.0398 (4)0.8024 (6)0.9880 (3)0.0583 (13)
H51.10460.86890.99440.070*
C61.0018 (4)0.7438 (6)1.0342 (2)0.0549 (12)
H61.04240.76841.07250.066*
C70.8704 (4)0.5871 (6)1.0767 (2)0.0476 (11)
H70.91520.62011.11320.057*
C80.8646 (5)0.6465 (8)0.8172 (2)0.0694 (15)
H8A0.86840.76320.81220.104*
H8B0.81470.59940.78260.104*
H8C0.93990.60030.82290.104*
C90.4421 (4)0.1995 (5)0.9915 (2)0.0449 (11)
C100.4820 (4)0.2381 (5)0.94127 (19)0.0404 (10)
C110.4171 (4)0.1799 (6)0.8863 (2)0.0455 (11)
C120.3175 (4)0.0908 (6)0.8808 (2)0.0559 (13)
H120.27590.05490.84400.067*
C130.2806 (4)0.0556 (6)0.9310 (3)0.0639 (15)
H130.21360.00430.92780.077*
C140.3411 (4)0.1075 (6)0.9848 (2)0.0545 (13)
H140.31510.08141.01800.065*
C150.5014 (4)0.2496 (6)1.0498 (2)0.0501 (12)
H150.46950.21881.08060.060*
C160.4046 (5)0.1701 (8)0.7830 (2)0.0810 (18)
H16A0.40010.05250.78330.122*
H16B0.44620.20420.75490.122*
H16C0.32860.21540.77230.122*
C170.7679 (5)0.4219 (7)1.1319 (2)0.0614 (14)
H17A0.79200.50001.16390.074*
H17B0.81320.32271.14200.074*
C180.6426 (5)0.3831 (7)1.1231 (2)0.0619 (14)
H18A0.63340.29611.14990.074*
H18B0.60260.47951.13200.074*
C190.7189 (7)0.0396 (9)0.8542 (3)0.107 (2)
H19A0.66150.04340.87630.161*
H19B0.78920.00220.87880.161*
H19C0.69350.03090.82060.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0401 (3)0.0532 (4)0.0286 (3)0.0046 (2)0.0112 (2)0.0037 (2)
Cl10.0659 (9)0.0907 (10)0.0711 (9)0.0173 (7)0.0283 (7)0.0296 (8)
Na10.0491 (10)0.0658 (12)0.0315 (9)0.0029 (8)0.0108 (8)0.0001 (8)
O10.0392 (17)0.066 (2)0.0297 (16)0.0046 (15)0.0077 (13)0.0015 (14)
O20.0442 (18)0.067 (2)0.0328 (17)0.0092 (15)0.0147 (14)0.0002 (14)
O30.0522 (19)0.089 (3)0.0370 (19)0.0065 (17)0.0157 (15)0.0078 (17)
O40.0504 (19)0.079 (2)0.0386 (18)0.0120 (16)0.0158 (15)0.0082 (16)
O50.082 (3)0.100 (3)0.099 (3)0.023 (3)0.022 (3)0.000 (3)
O60.103 (3)0.110 (3)0.099 (3)0.015 (3)0.011 (3)0.029 (3)
O70.100 (3)0.105 (3)0.102 (3)0.007 (3)0.038 (3)0.024 (3)
O80.122 (3)0.114 (3)0.119 (3)0.012 (3)0.014 (3)0.007 (3)
O5'0.101 (4)0.110 (4)0.099 (4)0.005 (3)0.030 (3)0.008 (3)
O6'0.094 (4)0.096 (4)0.093 (4)0.009 (4)0.019 (4)0.013 (4)
O7'0.098 (4)0.114 (4)0.105 (4)0.006 (3)0.022 (3)0.008 (4)
O8'0.096 (4)0.101 (4)0.101 (4)0.007 (4)0.018 (4)0.016 (4)
O90.084 (3)0.082 (3)0.080 (3)0.017 (2)0.038 (2)0.005 (2)
N10.052 (2)0.057 (2)0.0242 (19)0.010 (2)0.0073 (16)0.0034 (17)
N20.055 (2)0.053 (2)0.033 (2)0.0042 (19)0.0157 (18)0.0058 (17)
C10.044 (3)0.044 (3)0.042 (3)0.008 (2)0.007 (2)0.004 (2)
C20.033 (2)0.044 (3)0.044 (3)0.0067 (19)0.0110 (19)0.000 (2)
C30.042 (3)0.048 (3)0.042 (3)0.008 (2)0.015 (2)0.007 (2)
C40.052 (3)0.051 (3)0.063 (3)0.001 (2)0.023 (2)0.009 (2)
C50.055 (3)0.046 (3)0.073 (4)0.007 (2)0.014 (3)0.004 (3)
C60.050 (3)0.050 (3)0.061 (3)0.003 (2)0.006 (2)0.011 (2)
C70.048 (3)0.052 (3)0.039 (3)0.009 (2)0.002 (2)0.004 (2)
C80.073 (4)0.098 (4)0.043 (3)0.000 (3)0.025 (3)0.015 (3)
C90.047 (3)0.046 (3)0.047 (3)0.012 (2)0.023 (2)0.009 (2)
C100.038 (2)0.042 (3)0.043 (3)0.0073 (19)0.015 (2)0.004 (2)
C110.042 (3)0.049 (3)0.049 (3)0.002 (2)0.016 (2)0.002 (2)
C120.044 (3)0.059 (3)0.063 (3)0.003 (2)0.011 (2)0.004 (3)
C130.048 (3)0.062 (3)0.088 (5)0.008 (2)0.030 (3)0.003 (3)
C140.051 (3)0.052 (3)0.071 (4)0.005 (2)0.036 (3)0.013 (3)
C150.059 (3)0.050 (3)0.049 (3)0.013 (2)0.028 (2)0.014 (2)
C160.080 (4)0.117 (5)0.046 (3)0.026 (4)0.015 (3)0.022 (3)
C170.068 (3)0.083 (4)0.030 (3)0.007 (3)0.006 (2)0.005 (2)
C180.087 (4)0.068 (4)0.037 (3)0.002 (3)0.026 (3)0.004 (2)
C190.127 (6)0.090 (5)0.110 (6)0.039 (5)0.038 (5)0.022 (5)
Geometric parameters (Å, º) top
Cu1—O11.881 (3)C4—H40.9300
Cu1—O21.887 (3)C5—C61.360 (7)
Cu1—N11.905 (4)C5—H50.9300
Cu1—N21.922 (4)C6—H60.9300
Cl1—O61.394 (4)C7—H70.9300
Cl1—O51.408 (4)C8—H8A0.9600
Cl1—O7'1.410 (5)C8—H8B0.9600
Cl1—O5'1.413 (5)C8—H8C0.9600
Cl1—O6'1.418 (5)C9—C141.403 (6)
Cl1—O71.421 (4)C9—C101.410 (6)
Cl1—O81.424 (5)C9—C151.432 (7)
Cl1—O8'1.432 (5)C10—C111.411 (6)
O1—C21.309 (5)C11—C121.380 (6)
O2—C101.308 (5)C12—C131.382 (7)
O3—C31.377 (5)C12—H120.9300
O3—C81.415 (5)C13—C141.357 (7)
O4—C111.378 (5)C13—H130.9300
O4—C161.417 (6)C14—H140.9300
O9—C191.362 (8)C15—H150.9300
O9—H9A0.8200C16—H16A0.9600
N1—C71.285 (6)C16—H16B0.9600
N1—C171.470 (6)C16—H16C0.9600
N2—C151.267 (6)C17—C181.504 (7)
N2—C181.444 (6)C17—H17A0.9700
C1—C61.400 (7)C17—H17B0.9700
C1—C21.402 (6)C18—H18A0.9700
C1—C71.435 (6)C18—H18B0.9700
C2—C31.400 (6)C19—H19A0.9600
C3—C41.370 (6)C19—H19B0.9600
C4—C51.393 (7)C19—H19C0.9600
O1—Cu1—O286.23 (12)O3—C8—H8B109.5
O1—Cu1—N194.56 (15)H8A—C8—H8B109.5
O2—Cu1—N1174.99 (15)O3—C8—H8C109.5
O1—Cu1—N2174.73 (15)H8A—C8—H8C109.5
O2—Cu1—N294.09 (15)H8B—C8—H8C109.5
N1—Cu1—N285.58 (16)C14—C9—C10119.2 (4)
O6—Cl1—O5113.8 (5)C14—C9—C15118.2 (4)
O7'—Cl1—O5'129.6 (11)C10—C9—C15122.5 (4)
O7'—Cl1—O6'111.9 (10)O2—C10—C9125.0 (4)
O5'—Cl1—O6'88.9 (10)O2—C10—C11117.6 (4)
O6—Cl1—O7112.0 (5)C9—C10—C11117.4 (4)
O5—Cl1—O799.0 (5)O4—C11—C12124.9 (4)
O6—Cl1—O8112.6 (5)O4—C11—C10112.8 (4)
O5—Cl1—O8104.2 (4)C12—C11—C10122.2 (4)
O7—Cl1—O8114.3 (5)C11—C12—C13118.9 (5)
O7'—Cl1—O8'100.0 (10)C11—C12—H12120.5
O5'—Cl1—O8'129.9 (11)C13—C12—H12120.5
O6'—Cl1—O8'76.9 (10)C14—C13—C12120.8 (5)
C2—O1—Cu1126.7 (3)C14—C13—H13119.6
C10—O2—Cu1126.5 (3)C12—C13—H13119.6
C3—O3—C8117.9 (4)C13—C14—C9121.5 (4)
C11—O4—C16117.0 (4)C13—C14—H14119.3
C19—O9—H9A109.5C9—C14—H14119.3
C7—N1—C17121.4 (4)N2—C15—C9125.7 (4)
C7—N1—Cu1125.4 (3)N2—C15—H15117.2
C17—N1—Cu1113.1 (3)C9—C15—H15117.2
C15—N2—C18120.9 (4)O4—C16—H16A109.5
C15—N2—Cu1126.2 (3)O4—C16—H16B109.5
C18—N2—Cu1112.8 (3)H16A—C16—H16B109.5
C6—C1—C2120.1 (4)O4—C16—H16C109.5
C6—C1—C7117.7 (4)H16A—C16—H16C109.5
C2—C1—C7122.2 (4)H16B—C16—H16C109.5
O1—C2—C3117.7 (4)N1—C17—C18108.4 (4)
O1—C2—C1125.0 (4)N1—C17—H17A110.0
C3—C2—C1117.3 (4)C18—C17—H17A110.0
C4—C3—O3125.3 (4)N1—C17—H17B110.0
C4—C3—C2121.7 (4)C18—C17—H17B110.0
O3—C3—C2113.0 (4)H17A—C17—H17B108.4
C3—C4—C5120.4 (5)N2—C18—C17110.5 (4)
C3—C4—H4119.8N2—C18—H18A109.5
C5—C4—H4119.8C17—C18—H18A109.5
C6—C5—C4119.0 (5)N2—C18—H18B109.5
C6—C5—H5120.5C17—C18—H18B109.5
C4—C5—H5120.5H18A—C18—H18B108.1
C5—C6—C1121.4 (5)O9—C19—H19A109.5
C5—C6—H6119.3O9—C19—H19B109.5
C1—C6—H6119.3H19A—C19—H19B109.5
N1—C7—C1126.0 (4)O9—C19—H19C109.5
N1—C7—H7117.0H19A—C19—H19C109.5
C1—C7—H7117.0H19B—C19—H19C109.5
O3—C8—H8A109.5
O2—Cu1—O1—C2175.3 (3)C2—C1—C6—C51.2 (7)
N1—Cu1—O1—C20.2 (3)C7—C1—C6—C5178.4 (4)
N2—Cu1—O1—C291.1 (16)C17—N1—C7—C1172.8 (4)
O1—Cu1—O2—C10174.8 (4)Cu1—N1—C7—C14.1 (7)
N1—Cu1—O2—C1086.0 (17)C6—C1—C7—N1176.8 (4)
N2—Cu1—O2—C100.0 (4)C2—C1—C7—N10.3 (7)
O1—Cu1—N1—C73.7 (4)Cu1—O2—C10—C91.9 (6)
O2—Cu1—N1—C7102.6 (16)Cu1—O2—C10—C11179.5 (3)
N2—Cu1—N1—C7171.1 (4)C14—C9—C10—O2178.3 (4)
O1—Cu1—N1—C17173.5 (3)C15—C9—C10—O22.3 (7)
O2—Cu1—N1—C1774.6 (17)C14—C9—C10—C110.4 (6)
N2—Cu1—N1—C1711.8 (3)C15—C9—C10—C11179.1 (4)
O1—Cu1—N2—C1591.5 (16)C16—O4—C11—C123.9 (7)
O2—Cu1—N2—C151.8 (4)C16—O4—C11—C10178.3 (4)
N1—Cu1—N2—C15176.8 (4)O2—C10—C11—O40.1 (6)
O1—Cu1—N2—C1883.8 (16)C9—C10—C11—O4178.8 (4)
O2—Cu1—N2—C18177.1 (3)O2—C10—C11—C12177.8 (4)
N1—Cu1—N2—C187.9 (3)C9—C10—C11—C121.0 (7)
Cu1—O1—C2—C3176.9 (3)O4—C11—C12—C13178.4 (4)
Cu1—O1—C2—C13.1 (6)C10—C11—C12—C130.8 (7)
C6—C1—C2—O1179.4 (4)C11—C12—C13—C140.0 (8)
C7—C1—C2—O13.6 (7)C12—C13—C14—C90.6 (8)
C6—C1—C2—C30.7 (6)C10—C9—C14—C130.4 (7)
C7—C1—C2—C3176.4 (4)C15—C9—C14—C13179.9 (4)
C8—O3—C3—C46.6 (7)C18—N2—C15—C9176.8 (4)
C8—O3—C3—C2172.6 (4)Cu1—N2—C15—C91.9 (7)
O1—C2—C3—C4178.1 (4)C14—C9—C15—N2179.7 (4)
C1—C2—C3—C41.9 (6)C10—C9—C15—N20.2 (7)
O1—C2—C3—O32.7 (6)C7—N1—C17—C18154.9 (4)
C1—C2—C3—O3177.3 (4)Cu1—N1—C17—C1827.8 (5)
O3—C3—C4—C5177.8 (4)C15—N2—C18—C17159.2 (4)
C2—C3—C4—C51.3 (7)Cu1—N2—C18—C1725.3 (5)
C3—C4—C5—C60.6 (7)N1—C17—C18—N233.7 (6)
C4—C5—C6—C11.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O7i0.822.112.912 (8)164
O9—H9A···O5i0.821.992.761 (13)156
O9—H9A···O5i0.821.992.761 (13)156
O9—H9A···O7i0.822.112.912 (8)164
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CuNa(C18H18N2O4)(ClO4)(CH4O)]
Mr544.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)12.030 (2), 8.1444 (14), 23.381 (4)
β (°) 104.273 (3)
V3)2220.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.17 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.825, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
10424, 3843, 2651
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.03
No. of reflections3843
No. of parameters339
No. of restraints148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.68

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O7i0.822.112.912 (8)164.1
O9—H9A···O5'i0.821.992.761 (13)156.2
O9—H9A···O5'i0.821.992.761 (13)156.2
O9—H9A···O7i0.822.112.912 (8)164.1
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation (Y4080481).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. S1–19.  CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorreia, I., Pessoa, J. C., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  Web of Science CSD CrossRef Google Scholar
First citationLindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724–1727.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds