metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­iodidobis(tri-p-tolyl­phosphine oxide-κO)tin(IV)

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 15 July 2008; accepted 28 July 2008; online 6 August 2008)

The centrosymmetric title compound, [SnI4(C21H21OP)2], is a monomeric complex that displays a nearly octa­hedral coordination of tin(IV), with an Sn—O bond distance of 2.159 (2) Å and an average Sn—I bond distance of 2.79 (3) Å.

Related literature

For examples of structurally characterized tin(IV) halide complexes of phosphine oxide ligands, see: Tursina et al. (1985[Tursina, A. I., Aslanov, L. A., Medvedev, S. V. & Yatsenko, A. V. (1985). Koord. Khim. 11, 417-424.]); Tursina, Aslanov et al. (1986[Tursina, A. I., Aslanov, L. A., Chernyshev, V. V., Medvedev, S. V. & Yatsenko, A. V. (1986). Koord. Khim. 12, 420-424.]); Tursina, Yatsenko et al. (1986[Tursina, A. I., Yatsenko, A. V., Medvedev, S. V., Chernyshev, V. V. & Aslanov, L. A. (1986). Zh. Strukt. Khim. 27, 157-159.]); Tudela et al. (1993[Tudela, D., Tornero, J. D., Monge, A. & Sánchez-Herencia, A. J. (1993). Inorg. Chem. 32, 392, 3928-3930.]); Genge et al. (1999[Genge, A. R. J., Levason, W. & Reid, G. (1999). Inorg. Chim. Acta, 288, 142-149.]); Szymanska-Buzar et al. (2001[Szymanska-Buzar, T., Glowiak, T. & Czelusniak, I. (2001). Main Group Met. Chem. 24, 821-822.]); Davis, Clarke et al. (2006[Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006). Eur. J. Inorg. Chem. pp. 2773-2782.]); Davis, Levason et al. (2006[Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930-936.]); Caldwell & Tanski (2008[Caldwell, A. M. & Tanski, J. M. (2008). Acta Cryst. E64, m894.]). For related literature, see: Levason et al. (2003[Levason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem. 688, 280-282.]); Woollins (2003[Woollins, J. D. (2003). Inorganic Experiments, 2nd ed., edited by J. D. Woollins, pp. 36-37. Weinheim: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • [SnI4(C21H21OP)2]

  • Mr = 1266.99

  • Orthorhombic, P b c a

  • a = 18.6013 (11) Å

  • b = 11.9677 (7) Å

  • c = 19.3335 (11) Å

  • V = 4303.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.57 mm−1

  • T = 125 (2) K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.535, Tmax = 0.842

  • 53839 measured reflections

  • 5331 independent reflections

  • 4841 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.07

  • 5331 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn—O1 2.1590 (15)
Sn—I1 2.76735 (17)
Sn—I2 2.8158 (2)
O1—P1 1.5207 (16)
O1—Sn—O1i 180
O1—Sn—I1 89.84 (4)
O1i—Sn—I1 90.16 (4)
I1—Sn—I1i 180
O1—Sn—I2i 93.59 (4)
O1i—Sn—I2i 86.41 (4)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tin(IV) iodide may be readily prepared by oxidation of tin metal with iodine (Woollins, 2003). A relatively weak Lewis acid, SnI4 nevertheless forms complexes with phosphines and phosphine oxides (Genge et al. 1999; Davis, Clarke et al. 2006; Caldwell & Tanski, 2008). The phosphine oxide complexes are chiefly obtained by air oxidation of the phosphine ligands in the presence of the tin(IV) halide (Levason et al. 2003). The crystal and molecular structures of the bis(triphenyl phosphine oxide) adducts of SnX4, where X = F, Cl, Br and I, have all been previously reported. In the case of the fluoride, trans-[Ph3PO]2SnF4, the the phospine oxides are mutually trans (Davis, Clarke et al. 2006). The chloride, cis-[Ph3PO]2SnCl4, exhibits cis phospine oxides ligands (Tursina et al. 1985; Szymanska-Buzar et al. 2001), although it has been reported that both the cis and trans isomers are observed in solution by 31P NMR (Davis, Levason et al. 2006<). The structures of both cis-[Ph3PO]2SnBr4 and trans-[Ph3PO]2SnBr4 are known for the bromide (Tudela et al. 1993; Tursina, Yatsenko et al. 1986). In the structure of the iodide, the triphenyl phosphine oxide ligands of cis-[Ph3PO]2SnI4 are found to be cis (Tursina, Aslanov et al. 1986). As reported here, tri(p-tolyl) phosphine oxide results in an iodide complex wherein the phosphine oxide ligands are found to be trans.

Reaction of SnI4 with tri(p-tolyl) phosphine, (p-CH3C6H4)3P, in CHCl3 in the presence of air afforded the title complex [(p-CH3C6H4)3PO]2SnI4, (I).

Complex (I) exhibits a nearly octahedral coordination at tin, which resides on a crystallographic inversion center. The phosphine oxide ligands are mutually trans, with an Sn—O distance of 2.159 (2) Å, and Sn—I distances of 2.7674 (2) and 2.8158 (2) Å. Relevant bond lengths and angles can be found in Table 1. Despite the p-CH3 substituent and trans orientation of the phosphine oxide ligands in (I), the Sn—O and Sn—I distances in (I) are very similar to those found in cis-[Ph3PO]2SnI4, wherein the Sn—O distances are 2.15 (2) and 2.11 (2) Å, and the Sn—I distances range from 2.781 (2) to 2.816 (2) Å (Tursina, Aslanov et al. 1986).

Related literature top

For examples of structurally characterized tin(IV) halide complexes of phosphine oxide ligands, see: Tursina et al. (1985); Tursina, Aslanov, Chernyshev et al. (1986); Tursina, Yatsenko et al. (1986); Tudela et al. (1993); Genge et al. (1999); Szymanska-Buzar et al. (2001); Davis, Clarke et al. (2006); Davis, Levason et al. (2006); Caldwell & Tanski (2008). For related literature, see: Levason et al. (2003); Woollins (2003).

Experimental top

Complex (I) was prepared by treating a chloroform (ca 10 ml) solution of SnI4 (626 mg, 1.00 mmol) with an excess of (p-CH3C6H4)3P (647 mg, 2.13 mmol) in the presence of air. Suitable crystals for single-crystal X-ray analysis separated as orange plates within 2 weeks at room temperature.

Refinement top

H atoms on carbon atoms were included in calculated positions using a riding model at C—H distances 0.95 and 0.98 Å and Uiso(H) = 1.2 and 1.5Ueq(C) of the aryl and methyl C-atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity. Symmetry code: i = -x, -y+1, -z+1
trans-Tetraiodidobis(tri-p-tolylphosphine oxide-κO)tin(IV) top
Crystal data top
[SnI4(C21H21OP)2]F(000) = 2408
Mr = 1266.99Dx = 1.955 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ac2abCell parameters from 9901 reflections
a = 18.6013 (11) Åθ = 2.8–28.3°
b = 11.9677 (7) ŵ = 3.57 mm1
c = 19.3335 (11) ÅT = 125 K
V = 4303.9 (4) Å3Plate, orange
Z = 40.20 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
5331 independent reflections
Radiation source: fine-focus sealed tube4841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2424
Tmin = 0.535, Tmax = 0.842k = 1515
53839 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0232P)2 + 4.4313P]
where P = (Fo2 + 2Fc2)/3
5331 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[SnI4(C21H21OP)2]V = 4303.9 (4) Å3
Mr = 1266.99Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 18.6013 (11) ŵ = 3.57 mm1
b = 11.9677 (7) ÅT = 125 K
c = 19.3335 (11) Å0.20 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
5331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4841 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 0.842Rint = 0.032
53839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.07Δρmax = 0.56 e Å3
5331 reflectionsΔρmin = 0.50 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEX 2 CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Refinement of F2 against ALL reflections. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. EXTI refined to zero and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.00000.50000.50000.01453 (5)
I10.071249 (8)0.378968 (13)0.399124 (8)0.02266 (4)
I20.042286 (8)0.699279 (12)0.434117 (8)0.02186 (4)
O10.09443 (8)0.50578 (13)0.43516 (8)0.0188 (3)
P10.15379 (3)0.44482 (5)0.39642 (3)0.01603 (11)
C10.17934 (12)0.52832 (19)0.32327 (11)0.0194 (4)
C20.23667 (13)0.4945 (2)0.28165 (13)0.0265 (5)
H2A0.26050.42590.29100.032*
C30.25902 (13)0.5601 (2)0.22692 (13)0.0266 (5)
H3A0.29760.53550.19850.032*
C40.22576 (12)0.6619 (2)0.21282 (12)0.0221 (5)
C50.25292 (14)0.7344 (2)0.15496 (13)0.0291 (5)
H5A0.22050.79820.14880.044*
H5B0.30120.76150.16630.044*
H5C0.25470.69080.11210.044*
C60.16762 (13)0.6945 (2)0.25375 (13)0.0242 (5)
H6A0.14330.76240.24380.029*
C70.14473 (13)0.6286 (2)0.30905 (12)0.0222 (5)
H7A0.10550.65220.33690.027*
C80.23153 (12)0.43203 (19)0.45048 (11)0.0181 (4)
C90.24193 (13)0.5130 (2)0.50135 (12)0.0224 (5)
H9A0.20600.56790.50920.027*
C100.30407 (13)0.5139 (2)0.54033 (13)0.0245 (5)
H10A0.31030.56960.57480.029*
C110.35776 (13)0.4346 (2)0.53003 (13)0.0242 (5)
C120.42613 (15)0.4397 (2)0.57128 (16)0.0351 (6)
H12A0.44450.51650.57130.053*
H12B0.41660.41610.61890.053*
H12C0.46200.38990.55050.053*
C130.34695 (13)0.3523 (2)0.47927 (13)0.0238 (5)
H13A0.38270.29700.47190.029*
C140.28479 (12)0.3509 (2)0.43988 (12)0.0209 (4)
H14A0.27820.29480.40560.025*
C150.12942 (12)0.31033 (19)0.36393 (11)0.0181 (4)
C160.13571 (12)0.21535 (19)0.40494 (12)0.0204 (4)
H16A0.15730.22050.44940.024*
C170.11054 (14)0.1132 (2)0.38123 (13)0.0246 (5)
H17A0.11590.04860.40940.029*
C180.07758 (14)0.1039 (2)0.31675 (13)0.0275 (5)
C190.05059 (18)0.0075 (3)0.29219 (16)0.0406 (7)
H19A0.00210.00110.27310.061*
H19B0.08280.03650.25630.061*
H19C0.04920.05990.33110.061*
C200.07179 (14)0.1986 (2)0.27588 (13)0.0293 (5)
H20A0.04990.19320.23160.035*
C210.09738 (13)0.3010 (2)0.29838 (12)0.0249 (5)
H21A0.09330.36490.26950.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01273 (9)0.01808 (10)0.01278 (9)0.00027 (7)0.00002 (7)0.00045 (7)
I10.02116 (8)0.02856 (9)0.01826 (7)0.00429 (6)0.00170 (5)0.00372 (6)
I20.02329 (8)0.02232 (8)0.01999 (8)0.00454 (6)0.00017 (6)0.00311 (6)
O10.0151 (7)0.0217 (8)0.0195 (8)0.0017 (6)0.0029 (6)0.0009 (6)
P10.0144 (2)0.0187 (3)0.0150 (3)0.0020 (2)0.0015 (2)0.0013 (2)
C10.0182 (10)0.0223 (11)0.0177 (10)0.0002 (9)0.0020 (8)0.0027 (8)
C20.0247 (12)0.0271 (12)0.0276 (12)0.0088 (10)0.0078 (10)0.0076 (10)
C30.0203 (11)0.0366 (14)0.0229 (12)0.0047 (10)0.0068 (9)0.0041 (10)
C40.0193 (10)0.0288 (12)0.0182 (11)0.0042 (9)0.0010 (9)0.0037 (9)
C50.0272 (12)0.0343 (14)0.0259 (12)0.0038 (11)0.0023 (10)0.0100 (11)
C60.0237 (11)0.0236 (11)0.0253 (12)0.0030 (9)0.0001 (9)0.0056 (9)
C70.0202 (11)0.0246 (12)0.0216 (11)0.0041 (9)0.0039 (9)0.0009 (9)
C80.0158 (10)0.0217 (11)0.0169 (10)0.0011 (8)0.0010 (8)0.0022 (8)
C90.0197 (11)0.0244 (11)0.0231 (11)0.0022 (9)0.0029 (9)0.0030 (9)
C100.0249 (11)0.0270 (12)0.0215 (11)0.0029 (10)0.0007 (9)0.0019 (9)
C110.0209 (11)0.0264 (12)0.0254 (12)0.0024 (9)0.0041 (9)0.0062 (10)
C120.0284 (13)0.0333 (14)0.0436 (16)0.0016 (11)0.0146 (12)0.0003 (12)
C130.0200 (11)0.0226 (11)0.0289 (12)0.0052 (9)0.0005 (9)0.0041 (10)
C140.0197 (11)0.0209 (11)0.0220 (11)0.0013 (9)0.0012 (9)0.0009 (9)
C150.0169 (10)0.0214 (11)0.0161 (10)0.0022 (8)0.0013 (8)0.0020 (8)
C160.0213 (11)0.0228 (11)0.0172 (10)0.0007 (9)0.0009 (9)0.0010 (8)
C170.0297 (12)0.0204 (11)0.0236 (12)0.0003 (9)0.0027 (10)0.0011 (9)
C180.0270 (12)0.0315 (13)0.0239 (12)0.0038 (10)0.0072 (10)0.0113 (10)
C190.0497 (17)0.0370 (16)0.0350 (15)0.0097 (13)0.0074 (13)0.0184 (12)
C200.0285 (13)0.0412 (15)0.0183 (11)0.0026 (11)0.0011 (10)0.0072 (10)
C210.0251 (12)0.0301 (13)0.0193 (11)0.0016 (10)0.0018 (9)0.0005 (10)
Geometric parameters (Å, º) top
Sn—O12.1590 (15)C9—C101.380 (3)
Sn—O1i2.1591 (15)C9—H9A0.9500
Sn—I12.7674 (2)C10—C111.392 (3)
Sn—I1i2.7674 (2)C10—H10A0.9500
Sn—I2i2.8158 (2)C11—C131.404 (4)
Sn—I22.8158 (2)C11—C121.502 (3)
O1—P11.5207 (16)C12—H12A0.9800
P1—C151.786 (2)C12—H12B0.9800
P1—C81.791 (2)C12—H12C0.9800
P1—C11.796 (2)C13—C141.385 (3)
C1—C71.389 (3)C13—H13A0.9500
C1—C21.396 (3)C14—H14A0.9500
C2—C31.382 (3)C15—C161.391 (3)
C2—H2A0.9500C15—C211.405 (3)
C3—C41.393 (4)C16—C171.387 (3)
C3—H3A0.9500C16—H16A0.9500
C4—C61.396 (3)C17—C181.394 (4)
C4—C51.503 (3)C17—H17A0.9500
C5—H5A0.9800C18—C201.387 (4)
C5—H5B0.9800C18—C191.502 (4)
C5—H5C0.9800C19—H19A0.9800
C6—C71.395 (3)C19—H19B0.9800
C6—H6A0.9500C19—H19C0.9800
C7—H7A0.9500C20—C211.384 (4)
C8—C91.394 (3)C20—H20A0.9500
C8—C141.402 (3)C21—H21A0.9500
O1—Sn—O1i180.0C9—C8—P1117.67 (17)
O1—Sn—I189.84 (4)C14—C8—P1122.98 (17)
O1—Sn—I189.84 (4)C10—C9—C8120.5 (2)
O1i—Sn—I190.16 (4)C10—C9—H9A119.8
O1—Sn—I1i90.16 (4)C8—C9—H9A119.8
O1i—Sn—I1i89.84 (4)C9—C10—C11121.2 (2)
I1—Sn—I1i180.0C9—C10—H10A119.4
O1—Sn—I2i93.59 (4)C11—C10—H10A119.4
O1i—Sn—I2i86.41 (4)C10—C11—C13118.4 (2)
I1—Sn—I2i90.529 (6)C10—C11—C12120.2 (2)
I1i—Sn—I2i89.471 (6)C13—C11—C12121.4 (2)
O1—Sn—I286.41 (4)C11—C12—H12A109.5
O1i—Sn—I293.59 (4)C11—C12—H12B109.5
I1—Sn—I289.469 (6)H12A—C12—H12B109.5
I1i—Sn—I290.531 (6)C11—C12—H12C109.5
I2i—Sn—I2180.0H12A—C12—H12C109.5
P1—O1—Sn149.47 (10)H12B—C12—H12C109.5
O1—P1—C15114.91 (10)C14—C13—C11120.8 (2)
O1—P1—C8109.87 (10)C14—C13—H13A119.6
C15—P1—C8109.46 (11)C11—C13—H13A119.6
O1—P1—C1108.25 (10)C13—C14—C8120.1 (2)
C15—P1—C1106.96 (11)C13—C14—H14A120.0
C8—P1—C1107.07 (10)C8—C14—H14A120.0
C7—C1—C2119.4 (2)C16—C15—C21119.0 (2)
C7—C1—P1120.92 (17)C16—C15—P1120.96 (17)
C2—C1—P1119.66 (17)C21—C15—P1119.77 (18)
C3—C2—C1120.4 (2)C17—C16—C15120.2 (2)
C3—C2—H2A119.8C17—C16—H16A119.9
C1—C2—H2A119.8C15—C16—H16A119.9
C2—C3—C4120.9 (2)C16—C17—C18121.0 (2)
C2—C3—H3A119.6C16—C17—H17A119.5
C4—C3—H3A119.6C18—C17—H17A119.5
C3—C4—C6118.5 (2)C20—C18—C17118.6 (2)
C3—C4—C5120.1 (2)C20—C18—C19121.3 (2)
C6—C4—C5121.4 (2)C17—C18—C19120.1 (3)
C4—C5—H5A109.5C18—C19—H19A109.5
C4—C5—H5B109.5C18—C19—H19B109.5
H5A—C5—H5B109.5H19A—C19—H19B109.5
C4—C5—H5C109.5C18—C19—H19C109.5
H5A—C5—H5C109.5H19A—C19—H19C109.5
H5B—C5—H5C109.5H19B—C19—H19C109.5
C7—C6—C4120.9 (2)C21—C20—C18121.2 (2)
C7—C6—H6A119.6C21—C20—H20A119.4
C4—C6—H6A119.6C18—C20—H20A119.4
C1—C7—C6119.9 (2)C20—C21—C15120.0 (2)
C1—C7—H7A120.1C20—C21—H21A120.0
C6—C7—H7A120.0C15—C21—H21A120.0
C9—C8—C14119.1 (2)
I1—Sn—O1—P160.78 (19)C1—P1—C8—C1484.5 (2)
I1i—Sn—O1—P1119.22 (19)C14—C8—C9—C100.6 (3)
I2i—Sn—O1—P129.74 (19)P1—C8—C9—C10173.90 (18)
I2—Sn—O1—P1150.26 (19)C8—C9—C10—C110.0 (4)
Sn—O1—P1—C1531.2 (2)C9—C10—C11—C130.7 (4)
Sn—O1—P1—C892.7 (2)C9—C10—C11—C12177.7 (2)
Sn—O1—P1—C1150.70 (18)C10—C11—C13—C140.7 (4)
O1—P1—C1—C71.8 (2)C12—C11—C13—C14177.7 (2)
C15—P1—C1—C7122.5 (2)C11—C13—C14—C80.1 (4)
C8—P1—C1—C7120.2 (2)C9—C8—C14—C130.5 (3)
O1—P1—C1—C2175.57 (19)P1—C8—C14—C13173.65 (18)
C15—P1—C1—C260.1 (2)O1—P1—C15—C1686.7 (2)
C8—P1—C1—C257.2 (2)C8—P1—C15—C1637.4 (2)
C7—C1—C2—C30.2 (4)C1—P1—C15—C16153.10 (19)
P1—C1—C2—C3177.2 (2)O1—P1—C15—C2187.5 (2)
C1—C2—C3—C41.1 (4)C8—P1—C15—C21148.36 (18)
C2—C3—C4—C62.2 (4)C1—P1—C15—C2132.7 (2)
C2—C3—C4—C5177.3 (2)C21—C15—C16—C170.1 (3)
C3—C4—C6—C72.2 (4)P1—C15—C16—C17174.16 (18)
C5—C4—C6—C7177.4 (2)C15—C16—C17—C181.1 (4)
C2—C1—C7—C60.3 (4)C16—C17—C18—C201.4 (4)
P1—C1—C7—C6177.14 (19)C16—C17—C18—C19179.9 (2)
C4—C6—C7—C10.9 (4)C17—C18—C20—C210.6 (4)
O1—P1—C8—C927.6 (2)C19—C18—C20—C21179.3 (3)
C15—P1—C8—C9154.69 (18)C18—C20—C21—C150.5 (4)
C1—P1—C8—C989.72 (19)C16—C15—C21—C200.9 (3)
O1—P1—C8—C14158.13 (18)P1—C15—C21—C20173.47 (19)
C15—P1—C8—C1431.1 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[SnI4(C21H21OP)2]
Mr1266.99
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)125
a, b, c (Å)18.6013 (11), 11.9677 (7), 19.3335 (11)
V3)4303.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.57
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.535, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
53839, 5331, 4841
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.07
No. of reflections5331
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn—O12.1590 (15)Sn—I22.8158 (2)
Sn—I12.7674 (2)O1—P11.5207 (16)
O1—Sn—O1i180.0I1—Sn—I1i180.0
O1—Sn—I189.84 (4)O1—Sn—I2i93.59 (4)
O1i—Sn—I190.16 (4)O1i—Sn—I2i86.41 (4)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaldwell, A. M. & Tanski, J. M. (2008). Acta Cryst. E64, m894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDavis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006). Eur. J. Inorg. Chem. pp. 2773–2782.  Web of Science CSD CrossRef Google Scholar
First citationDavis, M. F., Levason, W., Reid, G. & Webster, M. (2006). Polyhedron, 25, 930–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationGenge, A. R. J., Levason, W. & Reid, G. (1999). Inorg. Chim. Acta, 288, 142–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationLevason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem. 688, 280–282.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzymanska-Buzar, T., Glowiak, T. & Czelusniak, I. (2001). Main Group Met. Chem. 24, 821–822.  CAS Google Scholar
First citationTudela, D., Tornero, J. D., Monge, A. & Sánchez–Herencia, A. J. (1993). Inorg. Chem. 32, 392, 3928–3930.  Google Scholar
First citationTursina, A. I., Aslanov, L. A., Chernyshev, V. V., Medvedev, S. V. & Yatsenko, A. V. (1986). Koord. Khim. 12, 420–424.  CAS Google Scholar
First citationTursina, A. I., Aslanov, L. A., Medvedev, S. V. & Yatsenko, A. V. (1985). Koord. Khim. 11, 417–424.  CAS Google Scholar
First citationTursina, A. I., Yatsenko, A. V., Medvedev, S. V., Chernyshev, V. V. & Aslanov, L. A. (1986). Zh. Strukt. Khim. 27, 157–159.  CAS Google Scholar
First citationWoollins, J. D. (2003). Inorganic Experiments, 2nd ed., edited by J. D. Woollins, pp. 36–37. Weinheim: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds