Download citation
Download citation
link to html
Prokaryotic 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MtaN) is a multifunctional enzyme that can hydrolyze S-adenosyl-L-homocysteine (SAH) and S-methyl-5′-thioadenosine (MTA) to give S-ribosyl-L-homocysteine (SRH) and S-methyl-5′-thioribose (MTR), respectively. This reaction plays a key role in several metabolic pathways, including biological methylation, polyamine biosynthesis, methionine recycling and bacterial quorum sensing. Structurally, MtaN belongs to the MtnN subfamily of the purine nucleoside phosphorylase (PNP)/uridine phosphorylase (UDP) phosphorylase family. Aeromonas hydrophila has two MtnN subfamily proteins: MtaN-1, a periplasmic protein with an N-terminal signal sequence, and MtaN-2, a cytosolic protein. In this study, MtaN-1 from Aeromonas hydrophila was successfully expressed and purified using Ni–NTA affinity, Q anion-exchange and gel-filtration chromatography. Crystals of the protein in complex with the substrate SAH were obtained and diffracted to a resolution of 1.4 Å. The crystals belonged to the trigonal space group P3121 or P3221, with unit-cell parameters a = b = 102.7, c = 118.8 Å. The asymmetric unit contained two molecules of MtaN-1 complexed with SAH.

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds