Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The hairpin ribozyme is a naturally occurring catalytic RNA composed of two helix-loop-helix domains, A and B, that dock to form the biologically active enzyme. Previously, the crystal structure of the hairpin has been solved as a four-way helical junction that incorporated the U1A protein as an artificial crystal-packing motif [Rupert & Ferré-D'Amaré (2001), Nature (London), 410, 780-786]. Here, the crystallization of a minimal junctionless hairpin ribozyme 64-mer is reported in the absence of protein. Crystals grow in space group P6122, with unit-cell parameters a = 93.1, c = 123.2 Å. Complete diffraction data have been collected to 3.35 Å resolution. Structural analysis should provide details of intermolecular RNA docking, including the ground-state conformations of the U39C mutation relevant to hairpin catalysis.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds