Download citation
Download citation
link to html
Neutron diffraction can be used as a tool for the characterization of metal materials in a totally non-invasive mode. In binary alloys with two elements in solid solution, crystallographic structure analysis provides information on the overall element compositions of the metal, based on the linear relationship between elemental fractions and lattice parameters known as Vegard's rule. However, for ternary solid-solution alloys the derivation of the overall metal composition is not straightforward because the problem is mathematically underdetermined. A number of artificially produced samples in the ternary system Cu–Zn–Sn, widely used in antiquity for gunmetal, were investigated by time-of-flight neutron diffraction, inductively coupled plasma mass spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy and electron microprobe analysis. The multi-analysis approach allows definition of the limits and capabilities of neutron diffraction for obtaining the overall composition of a small sample set of ternary alloys, and thus moves the methodical approach a step forward even though it is applicable to the present sample set only. A relation showing an increasing Cu and Sn fraction counterbalanced by decreasing Zn content is presented, which allows the determination of the δ-phase composition from a lattice parameter measurement. Furthermore, the observed Zn loss up to 1.8 wt% for each melting step is of significance for the reconstruction of ancient technologies.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576716017805/po5065sup1.pdf
Supplementary Figures 1 to 5 and Tables 1 to 2


Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds