research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystallographic and spectroscopic characterization of racemic Mosher's Acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by S. Parkin, University of Kentucky, USA (Received 17 June 2020; accepted 23 June 2020; online 26 June 2020)

The title compound, C10H9F3O3, represents the structure of racemic Mosher's Acid (systematic name: 3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoic acid), a carb­oxy­lic acid that when resolved can be employed as a chiral derivatizing agent. The compound contains a carb­oxy­lic acid group, a meth­oxy group and a tri­fluoro­methyl substituent on an asymmetric benzylic carbon atom. The two independent mol­ecules in the asymmetric unit form a non-centrosymmetric homochiral dimer via inter­molecularly hydrogen-bonded head-to-tail dimers with graph-set notation R22(8) and donor–acceptor hydrogen-bonding distances of 2.6616 (13) and 2.6801 (13) Å.

1. Chemical context

The title compound, α-meth­oxy-α-tri­fluoro­methyl­phenyl­acetic acid, or 3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoic acid, MTPA (I)[link] is commonly known as Mosher's Acid. Mosher's Acid is an aromatic compound in which an asymmetric benzylic carbon atom is specifically substituted with a carb­oxy­lic acid group, a meth­oxy group and a tri­fluoro­methyl substituent. When resolved and in its acid chloride form, it has been shown to be useful as a chiral derivatizing agent (CDA) with natural organic compounds (Cimmino et al., 2017[Cimmino, A., Masi, M., Evidente, M., Superchi, S. & Evidente, A. (2017). J. Pharm. Biomed. Anal. 144, 59-89.]). Originally, Mosher's Acid chloride was used to convert a mixture of enanti­omers of amines or alcohols into diastereomeric amides or esters, respectively, in order to analyze the qu­anti­ties of each enanti­omer present within the sample by NMR (Dale et al., 1969[Dale, J. A., Dull, D. L. & Mosher, H. S. (1969). J. Org. Chem. 34, 2543-2549.]), and also to elucidate the absolute stereochemistry of the starting material (Allen et al., 2008[Allen, D. A., Tomaso, A. E. Jr, Priest, O. P., Hindson, D. F. & Hurlburt, J. L. (2008). J. Chem. Educ. 85, 698-700.]). Mosher's Acid has recently been used in NMR studies of the ring flip in the atrane cages of Group 14 metallatranes, where as an axial substituent it forces the Δ- and Λ-isomers to become diastereomeric (Glowacki et al., 2019[Glowacki, B., Lutter, M., Hiller, W. & Jurkschat, K. (2019). Inorg. Chem. 58, 4244-4252.]). The synthesis of Mosher's Acid reported in early work converted phenyl tri­fluoro­methyl ketone to α-tri­fluoro­methyl­phenyl­aceto­nitrile with sodium cyanide and methyl sulfate followed by treatment with concentrated sulfuric acid to obtain the acid (Dale et al., 1969[Dale, J. A., Dull, D. L. & Mosher, H. S. (1969). J. Org. Chem. 34, 2543-2549.]). More recently, Mosher's Acid was obtained by treatment of phenyl tri­fluoro­methyl ketone with tri­methyl­silyl tri­chloro­acetate followed by hydrolysis (Goldberg & Alper, 1992[Goldberg, Y. & Alper, H. (1992). J. Org. Chem. 57, 3731-3732.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (Fig. 1[link]) reveals that there are two independent mol­ecules in the asymmetric unit. Each consists of a mono-substituted benzene ring including a meth­oxy group, a tri­fluoro­methyl group, and a carb­oxy­lic acid on the asymmetric benzylic carbon atom. The mol­ecules show slightly different conformations, specifically in regard to the disposition of the meth­oxy group. In the mol­ecule with asymmetric carbon C11, the meth­oxy group is canted away from the phenyl ring, with a C15—C11—O3—C14 torsional angle of −175.55 (12)°. In the other mol­ecule, the meth­oxy group is bent in, with a C25—C21—O6—C24 torsional angle of −51.12 (15)°.

[Figure 1]
Figure 1
A view of the two independent mol­ecules of 3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoic acid (I)[link], oriented so as to highlight the different conformations of the meth­oxy group. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

Although the material is racemic, two independent mol­ecules of the same chirality are observed to hydrogen bond together into pairwise dimers (Table 1[link], Fig. 2[link]), with graph-set notation [R_{2}^{2}](8) and donor–acceptor hydrogen-bonding distances of 2.6616 (13) and 2.6801 (13) Å. The dimers further pack together via van der Waals inter­actions without any other notable inter­molecular inter­actions such as π-stacking or fluorine–fluorine contacts less than the sum of the van der Waals radii. The hydrogen-bonded dimers stack along the crystallographic b-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.83 (1) 1.83 (1) 2.6616 (13) 173 (2)
O5—H5⋯O1 0.87 (1) 1.83 (1) 2.6801 (13) 169 (2)
[Figure 2]
Figure 2
A view of the inter­molecular hydrogen bonding in 3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoic acid (I)[link].
[Figure 3]
Figure 3
A view of the packing in 3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoic acid (I)[link].

4. Database survey

The Cambridge Structural Database (Version 5.40, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no structures of racemic or resolved Mosher's Acid itself. However, there are numerous structures of its carboxyl­ate salts, and one example (UTUHUN) of the neutral acid co-crystallized with an imidazole (Tydlitát et al., 2010[Tydlitát, J., Bureš, F., Kulhánek, J. & Růžička, A. (2010). Synthesis, pp. 3934-3940.]). In this example, the bond lengths about the asymmetric carbon atom are similar to those observed in (I)[link], with C—CO2H = 1.547 (5), C—CF3 = 1.538 (6), C—CAr 1.519 (5) and C—OCH3 1.419 (5) Å, while the disposition of the meth­oxy group with a torsional angle of 170.02° is most similar to the unique mol­ecule in (I)[link] with asymmetric carbon atom C11.

5. Synthesis and crystallization

Racemic 3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoic acid (99%) was purchased from Aldrich Chemical Company, USA, and was used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C—H = 0.95 and and 0.98 Å and Uiso(H) = 1.2 and 1.5 × Ueq(C) of the aryl and methyl C atoms, respectively. The positions of the carb­oxy­lic acid hydrogen atoms were found in the difference map and the atom refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and Uiso(H) = 1.2 × Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C10H9F3O3
Mr 234.17
Crystal system, space group Monoclinic, P21/n
Temperature (K) 125
a, b, c (Å) 10.5916 (6), 9.2081 (5), 20.9930 (12)
β (°) 103.304 (1)
V3) 1992.47 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.20 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.92, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 48631, 6071, 4730
Rint 0.039
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.02
No. of reflections 6071
No. of parameters 295
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

7. Analytical data

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 3.57 (s, 3 H, OCH3), 7.42–7.46 (m, 3 H, Car­ylH), 7.57–7.61 (m, 2 H, Car­ylH), 9.8 (br s, 1 H, OH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 55.56 (s, CH3), 84.38 (q, JC–F = 28 Hz, C), 125.94 (q, JC–F = 292 Hz, CF3), 127.39 (s, Car­ylH), 128.68 (s, Car­ylH), 130.01 (s, Car­ylH), 131.08 (s, Car­yl), 170.90 (s, COOH). IR (Thermo Nicolet iS50, ATR, cm−1): (3700–2700 v br, O—H str), 3069 (m, Car­yl—H str), 2955 (m, Calk­yl—H str), 2852 (m), 2642 (w), 1733 (v s, C=O str), 1499 (m), 1453 (m), 1408 (m), 1271 (s), 1170 (s), 1124 (s), 1082 (m), 1013 (s), 987 (m), 959 (m), 919 (w), 765 (m), 704 (s). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 248 amu, corresponding to the methyl ester of (I)[link], prepared from the parent carb­oxy­lic acid using a literature procedure (Di Raddo, 1993[Di Raddo, P. (1993). J. Chem. Educ. 70, 1034.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

3,3,3-Trifluoro-2-methoxy-2-phenylpropanoic acid top
Crystal data top
C10H9F3O3F(000) = 960
Mr = 234.17Dx = 1.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5916 (6) ÅCell parameters from 9803 reflections
b = 9.2081 (5) Åθ = 2.4–30.5°
c = 20.9930 (12) ŵ = 0.15 mm1
β = 103.304 (1)°T = 125 K
V = 1992.47 (19) Å3Plate, colourless
Z = 80.20 × 0.10 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
6071 independent reflections
Radiation source: fine-focus sealed tube4730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.0°
φ and ω scansh = 1415
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.92, Tmax = 0.99l = 2929
48631 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.9577P]
where P = (Fo2 + 2Fc2)/3
6071 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.52 e Å3
2 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.66861 (9)0.65463 (11)0.90225 (4)0.0310 (2)
F20.78633 (9)0.79358 (9)0.85702 (4)0.02649 (19)
F30.77343 (8)0.56483 (9)0.83505 (4)0.02457 (18)
F40.67911 (9)0.90363 (10)0.39138 (4)0.02474 (19)
F50.64920 (9)1.02517 (9)0.47416 (4)0.02539 (19)
F60.53035 (8)0.83795 (9)0.43956 (4)0.02290 (18)
O10.73476 (9)0.72153 (11)0.71987 (4)0.0206 (2)
O20.53551 (10)0.81547 (11)0.68469 (5)0.0228 (2)
H20.5616 (18)0.826 (2)0.6504 (8)0.027*
O30.50381 (10)0.81283 (10)0.80889 (5)0.0220 (2)
O40.61388 (9)0.82629 (11)0.57308 (4)0.0203 (2)
O50.82345 (10)0.77145 (12)0.61218 (4)0.0223 (2)
H50.7946 (17)0.768 (2)0.6476 (8)0.027*
O60.86887 (9)0.86103 (11)0.49365 (5)0.02027 (19)
C110.58366 (12)0.70712 (14)0.79025 (6)0.0156 (2)
C120.62748 (12)0.75076 (14)0.72772 (6)0.0160 (2)
C130.70474 (14)0.67975 (15)0.84652 (6)0.0200 (3)
C140.55428 (17)0.95805 (16)0.81927 (9)0.0327 (4)
H14A0.489671.0210620.8319980.049*
H14B0.6337390.9574550.8541310.049*
H14C0.5738210.9946180.7787630.049*
C150.50551 (12)0.56621 (14)0.77695 (6)0.0162 (2)
C160.53654 (13)0.46020 (15)0.73582 (6)0.0201 (3)
H16A0.6064160.4754580.7151980.024*
C170.46551 (14)0.33204 (15)0.72487 (7)0.0233 (3)
H17A0.4876880.2594460.6971850.028*
C180.36257 (14)0.30976 (16)0.75412 (7)0.0242 (3)
H18A0.3131930.2228150.7459730.029*
C190.33183 (14)0.41489 (16)0.79538 (7)0.0252 (3)
H19A0.2611290.3997880.8154310.03*
C210.75080 (12)0.79338 (13)0.49629 (6)0.0151 (2)
C220.72168 (12)0.80054 (13)0.56506 (6)0.0156 (2)
C230.65022 (13)0.89092 (14)0.45034 (6)0.0179 (2)
C240.98907 (14)0.78807 (18)0.52184 (7)0.0269 (3)
H24A1.0620210.8482820.51620.04*
H24B0.9954280.7717650.56860.04*
H24C0.9915390.6945390.4998830.04*
C250.73698 (12)0.63648 (13)0.47147 (6)0.0153 (2)
C260.67573 (13)0.53083 (14)0.50129 (6)0.0196 (3)
H26A0.6440770.5551680.5387570.023*
C270.66064 (14)0.39003 (15)0.47659 (7)0.0222 (3)
H27A0.6197560.3183530.4974690.027*
C280.70527 (14)0.35458 (15)0.42156 (7)0.0219 (3)
H28A0.6944190.2587790.4043740.026*
C290.76578 (15)0.45913 (16)0.39162 (7)0.0247 (3)
H29A0.7958720.4347810.3536970.03*
C1100.40383 (14)0.54225 (15)0.80757 (7)0.0215 (3)
H11A0.3837270.6128170.8367360.026*
C2100.78286 (14)0.59938 (15)0.41660 (6)0.0214 (3)
H21A0.8258710.6699370.3962170.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0344 (5)0.0445 (6)0.0150 (4)0.0067 (4)0.0075 (3)0.0032 (4)
F20.0266 (4)0.0270 (4)0.0238 (4)0.0092 (3)0.0017 (3)0.0027 (3)
F30.0221 (4)0.0232 (4)0.0259 (4)0.0044 (3)0.0003 (3)0.0043 (3)
F40.0308 (5)0.0269 (4)0.0178 (4)0.0027 (3)0.0083 (3)0.0078 (3)
F50.0328 (5)0.0140 (4)0.0289 (4)0.0045 (3)0.0061 (3)0.0008 (3)
F60.0177 (4)0.0272 (4)0.0223 (4)0.0008 (3)0.0016 (3)0.0033 (3)
O10.0169 (4)0.0271 (5)0.0185 (4)0.0023 (4)0.0056 (3)0.0041 (4)
O20.0204 (5)0.0294 (5)0.0193 (4)0.0058 (4)0.0057 (4)0.0072 (4)
O30.0250 (5)0.0146 (4)0.0304 (5)0.0009 (4)0.0148 (4)0.0024 (4)
O40.0195 (5)0.0246 (5)0.0174 (4)0.0030 (4)0.0054 (3)0.0005 (3)
O50.0193 (5)0.0323 (5)0.0151 (4)0.0048 (4)0.0036 (3)0.0025 (4)
O60.0173 (4)0.0193 (5)0.0251 (5)0.0033 (4)0.0065 (4)0.0023 (4)
C110.0163 (6)0.0154 (5)0.0162 (5)0.0012 (4)0.0062 (4)0.0000 (4)
C120.0168 (6)0.0147 (5)0.0167 (5)0.0004 (4)0.0045 (4)0.0005 (4)
C130.0230 (6)0.0206 (6)0.0165 (5)0.0035 (5)0.0048 (5)0.0000 (5)
C140.0373 (9)0.0156 (7)0.0504 (10)0.0018 (6)0.0212 (7)0.0051 (6)
C150.0161 (6)0.0148 (6)0.0174 (5)0.0006 (4)0.0031 (4)0.0019 (4)
C160.0195 (6)0.0203 (6)0.0213 (6)0.0008 (5)0.0065 (5)0.0026 (5)
C170.0258 (7)0.0191 (6)0.0237 (6)0.0009 (5)0.0031 (5)0.0043 (5)
C180.0239 (7)0.0192 (6)0.0269 (7)0.0045 (5)0.0010 (5)0.0025 (5)
C190.0242 (7)0.0240 (7)0.0295 (7)0.0037 (5)0.0107 (5)0.0045 (5)
C210.0154 (6)0.0145 (5)0.0160 (5)0.0006 (4)0.0047 (4)0.0011 (4)
C220.0189 (6)0.0123 (5)0.0156 (5)0.0012 (4)0.0038 (4)0.0001 (4)
C230.0217 (6)0.0155 (6)0.0169 (5)0.0003 (5)0.0055 (5)0.0019 (4)
C240.0164 (6)0.0348 (8)0.0296 (7)0.0006 (6)0.0052 (5)0.0022 (6)
C250.0157 (5)0.0145 (5)0.0160 (5)0.0008 (4)0.0039 (4)0.0008 (4)
C260.0231 (6)0.0170 (6)0.0207 (6)0.0015 (5)0.0094 (5)0.0002 (5)
C270.0251 (7)0.0162 (6)0.0267 (6)0.0037 (5)0.0085 (5)0.0002 (5)
C280.0235 (7)0.0166 (6)0.0245 (6)0.0008 (5)0.0033 (5)0.0035 (5)
C290.0333 (8)0.0216 (7)0.0216 (6)0.0020 (6)0.0110 (6)0.0031 (5)
C1100.0235 (7)0.0184 (6)0.0250 (6)0.0001 (5)0.0109 (5)0.0016 (5)
C2100.0281 (7)0.0187 (6)0.0199 (6)0.0002 (5)0.0108 (5)0.0018 (5)
Geometric parameters (Å, º) top
F1—C131.3323 (15)C16—H16A0.95
F2—C131.3440 (16)C17—C181.384 (2)
F3—C131.3370 (16)C17—H17A0.95
F4—C231.3467 (14)C18—C191.387 (2)
F5—C231.3345 (15)C18—H18A0.95
F6—C231.3300 (16)C19—C1101.390 (2)
O1—C121.2152 (16)C19—H19A0.95
O2—C121.3095 (15)C21—C251.5313 (17)
O2—H20.834 (14)C21—C221.5456 (17)
O3—C111.4029 (15)C21—C231.5489 (18)
O3—C141.4380 (18)C24—H24A0.98
O4—C221.2152 (16)C24—H24B0.98
O5—C221.3120 (15)C24—H24C0.98
O5—H50.866 (14)C25—C2101.3920 (17)
O6—C211.4096 (15)C25—C261.3951 (17)
O6—C241.4407 (17)C26—C271.3918 (19)
C11—C151.5298 (18)C26—H26A0.95
C11—C121.5430 (17)C27—C281.3842 (19)
C11—C131.5511 (19)C27—H27A0.95
C14—H14A0.98C28—C291.385 (2)
C14—H14B0.98C28—H28A0.95
C14—H14C0.98C29—C2101.3899 (19)
C15—C161.3918 (18)C29—H29A0.95
C15—C1101.3929 (18)C110—H11A0.95
C16—C171.3899 (19)C210—H21A0.95
C12—O2—H2107.7 (13)O6—C21—C22112.79 (10)
C11—O3—C14117.42 (11)C25—C21—C22109.51 (10)
C22—O5—H5105.2 (12)O6—C21—C23102.04 (10)
C21—O6—C24119.07 (10)C25—C21—C23109.69 (10)
O3—C11—C15107.68 (10)C22—C21—C23107.49 (10)
O3—C11—C12112.04 (10)O4—C22—O5124.79 (11)
C15—C11—C12108.76 (10)O4—C22—C21122.24 (11)
O3—C11—C13110.26 (10)O5—C22—C21112.93 (11)
C15—C11—C13108.60 (10)F6—C23—F5108.29 (11)
C12—C11—C13109.41 (10)F6—C23—F4106.58 (10)
O1—C12—O2125.28 (11)F5—C23—F4106.68 (10)
O1—C12—C11122.09 (11)F6—C23—C21112.71 (10)
O2—C12—C11112.57 (11)F5—C23—C21111.56 (10)
F1—C13—F3107.39 (11)F4—C23—C21110.71 (10)
F1—C13—F2107.16 (10)O6—C24—H24A109.5
F3—C13—F2106.91 (11)O6—C24—H24B109.5
F1—C13—C11110.04 (11)H24A—C24—H24B109.5
F3—C13—C11112.35 (10)O6—C24—H24C109.5
F2—C13—C11112.70 (11)H24A—C24—H24C109.5
O3—C14—H14A109.5H24B—C24—H24C109.5
O3—C14—H14B109.5C210—C25—C26119.15 (12)
H14A—C14—H14B109.5C210—C25—C21119.27 (11)
O3—C14—H14C109.5C26—C25—C21121.55 (11)
H14A—C14—H14C109.5C27—C26—C25120.52 (12)
H14B—C14—H14C109.5C27—C26—H26A119.7
C16—C15—C110119.55 (12)C25—C26—H26A119.7
C16—C15—C11120.87 (11)C28—C27—C26119.91 (13)
C110—C15—C11119.57 (11)C28—C27—H27A120.0
C17—C16—C15120.14 (12)C26—C27—H27A120.0
C17—C16—H16A119.9C27—C28—C29119.83 (13)
C15—C16—H16A119.9C27—C28—H28A120.1
C18—C17—C16120.26 (13)C29—C28—H28A120.1
C18—C17—H17A119.9C28—C29—C210120.55 (12)
C16—C17—H17A119.9C28—C29—H29A119.7
C17—C18—C19119.71 (13)C210—C29—H29A119.7
C17—C18—H18A120.1C19—C110—C15119.89 (13)
C19—C18—H18A120.1C19—C110—H11A120.1
C18—C19—C110120.41 (13)C15—C110—H11A120.1
C18—C19—H19A119.8C29—C210—C25120.03 (12)
C110—C19—H19A119.8C29—C210—H21A120.0
O6—C21—C25114.82 (10)C25—C210—H21A120.0
C14—O3—C11—C15175.55 (12)O6—C21—C22—O4138.38 (12)
C14—O3—C11—C1255.99 (16)C25—C21—C22—O492.42 (14)
C14—O3—C11—C1366.12 (15)C23—C21—C22—O426.69 (16)
O3—C11—C12—O1143.91 (12)O6—C21—C22—O543.73 (14)
C15—C11—C12—O197.17 (14)C25—C21—C22—O585.47 (13)
C13—C11—C12—O121.32 (17)C23—C21—C22—O5155.42 (11)
O3—C11—C12—O238.72 (15)O6—C21—C23—F6173.14 (10)
C15—C11—C12—O280.20 (13)C25—C21—C23—F650.98 (13)
C13—C11—C12—O2161.31 (11)C22—C21—C23—F668.02 (13)
O3—C11—C13—F150.84 (14)O6—C21—C23—F564.78 (12)
C15—C11—C13—F166.92 (13)C25—C21—C23—F5173.06 (10)
C12—C11—C13—F1174.49 (10)C22—C21—C23—F554.07 (13)
O3—C11—C13—F3170.44 (10)O6—C21—C23—F453.86 (12)
C15—C11—C13—F352.68 (13)C25—C21—C23—F468.29 (13)
C12—C11—C13—F365.90 (13)C22—C21—C23—F4172.71 (10)
O3—C11—C13—F268.70 (13)O6—C21—C25—C21039.48 (16)
C15—C11—C13—F2173.53 (10)C22—C21—C25—C210167.56 (12)
C12—C11—C13—F254.95 (14)C23—C21—C25—C21074.70 (15)
O3—C11—C15—C16156.05 (12)O6—C21—C25—C26142.61 (12)
C12—C11—C15—C1634.43 (16)C22—C21—C25—C2614.53 (16)
C13—C11—C15—C1684.56 (14)C23—C21—C25—C26103.21 (13)
O3—C11—C15—C11025.42 (16)C210—C25—C26—C270.0 (2)
C12—C11—C15—C110147.04 (12)C21—C25—C26—C27177.94 (12)
C13—C11—C15—C11093.96 (14)C25—C26—C27—C280.8 (2)
C110—C15—C16—C170.7 (2)C26—C27—C28—C290.5 (2)
C11—C15—C16—C17179.24 (12)C27—C28—C29—C2100.4 (2)
C15—C16—C17—C180.8 (2)C18—C19—C110—C151.6 (2)
C16—C17—C18—C191.1 (2)C16—C15—C110—C191.9 (2)
C17—C18—C19—C1100.1 (2)C11—C15—C110—C19179.57 (12)
C24—O6—C21—C2551.12 (15)C28—C29—C210—C251.1 (2)
C24—O6—C21—C2275.29 (14)C26—C25—C210—C290.9 (2)
C24—O6—C21—C23169.69 (11)C21—C25—C210—C29177.05 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.83 (1)1.83 (1)2.6616 (13)173 (2)
O5—H5···O10.87 (1)1.83 (1)2.6801 (13)169 (2)
C14—H14B···F20.982.22.840 (2)122
C14—H14C···O20.982.533.080 (2)115
C24—H24B···O50.982.222.8685 (18)123
 

Funding information

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund and Olin College Fund of Vassar College for funding publication expenses.

References

First citationAllen, D. A., Tomaso, A. E. Jr, Priest, O. P., Hindson, D. F. & Hurlburt, J. L. (2008). J. Chem. Educ. 85, 698–700.  CrossRef CAS Google Scholar
First citationBruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimmino, A., Masi, M., Evidente, M., Superchi, S. & Evidente, A. (2017). J. Pharm. Biomed. Anal. 144, 59–89.  CrossRef CAS PubMed Google Scholar
First citationDale, J. A., Dull, D. L. & Mosher, H. S. (1969). J. Org. Chem. 34, 2543–2549.  CrossRef CAS Google Scholar
First citationDi Raddo, P. (1993). J. Chem. Educ. 70, 1034.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlowacki, B., Lutter, M., Hiller, W. & Jurkschat, K. (2019). Inorg. Chem. 58, 4244–4252.  CSD CrossRef CAS PubMed Google Scholar
First citationGoldberg, Y. & Alper, H. (1992). J. Org. Chem. 57, 3731–3732.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTydlitát, J., Bureš, F., Kulhánek, J. & Růžička, A. (2010). Synthesis, pp. 3934–3940.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds