research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-{[(4-iodo­phen­yl)imino]­meth­yl}-4-nitro­phenol

CROSSMARK_Color_square_no_text.svg

aPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, Samsun, Turkey, cDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, UP, India, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Samsun, Turkey, and eDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 21 May 2020; accepted 19 June 2020; online 26 June 2020)

The title compound, C13H9IN2O3, was synthesized by a condensation reaction between 2-hy­droxy-5-nitro­benzaldehyde and 4-iodo­aniline, and crystallizes in the ortho­rhom­bic space group Pna21. The 4-iodo­benzene ring is inclined to the phenol ring by a dihedral angle of 39.1 (2)°. The configuration about the C=N double bond is E. The crystal structure features C—H⋯O hydrogen-bonding inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the packing arrangement are O⋯H/H⋯O (26.9%) and H⋯H (22.0%) inter­actions.

1. Chemical context

Over the past 25 years, extensive research has been directed towards the synthesis and use of Schiff base compounds in organic and inorganic chemistry as they have important medicinal and pharmaceutical applications. These compounds exhibit biological activities, including anti­bacterial, anti­fungal, anti­cancer and herbicidal properties (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]; Karia & Parsania, 1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]). They may also show useful photochromic properties, leading to applications in various fields such as the measurement and control of radiation intensities in imaging systems and optical computers, electronics, optoelectronics and photonics (Iwan et al., 2007[Iwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030-1041.]). Schiff bases derived from 2-hy­droxy-5-nitro­benzaldehyde are widely used either as materials or as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141-148.]). Intra­molecular hydrogen-atom transfer (tautomerism) from the o-hy­droxy group to the imine-N atom is of prime importance with respect to the solvato-, thermo- and photochromic properties of o-hy­droxy Schiff bases (Filarowski, 2005[Filarowski, A. (2005). J. Phys. Org. Chem. 18, 686-698.]; Hadjoudis & Mavridis 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]). Such proton-exchanging materials can be utilized for the design of various mol­ecular electronic devices (Alarcón et al., 1999[Alarcón, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233-240.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]), fluorescence sensors (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]; Kumar et al., 2017[Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11-21.]; 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]) and non-linear optical properties (Faizi et al., 2020[Faizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039-464.]). We report herein the synthesis (from 2-hy­droxy-5-nitro­benzaldehyde and 4-iodo­aniline) and crystal structure of the title compound (I)[link], along with the findings of a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. An intra­molecular O—H⋯N hydrogen bond is observed (Table 1[link] and Fig. 1[link]). This is a relatively common feature in analogous imine–phenol compounds (see Database survey section). The imine group displays a C8—C7—N1—C4 torsion angle of 174.5 (6)°. The 4-iodo­benzene ring (C1–C6) is inclined by a dihedral angle of 39.1 (2)° to the phenol ring (C8–C13), which renders the mol­ecule non-planar. The configuration of the C7=N1 bond of this Schiff base is E, and the intra­molecular O1—H1⋯N1 hydrogen bond forms an S(6) ring motif (Fig. 1[link] and Table 1[link]). The 4-nitro group is slightly tilted away from co-planarity with the benzene ring to which it is attached [O2—N2—C10—C9 = −7.4 (10)° and O3—N2—C10—C11= −7.4 (10)°]. The C13—O1 distance [1.330 (7) Å] is close to normal for values reported for single C—O bonds in phenols and salicyl­idene­amines (Ozeryanskii et al., 2006[Ozeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782-790.]). The N1=C7 bond is short at 1.264 (8) Å, indicative of double-bond character, while the long C7—C8 bond [1.444 (8) Å] implies a single bond. All these data support the existence of the phenol–imine tautomer for (I)[link] in its crystalline state. These features are similar to those observed in related 4-di­methyl­amino-N-salicylideneanilines (Filipenko et al., 1983[Filipenko, O. S., Ponomarev, V. I., Bolotin, B. M. & Atovmyan, L. O. (1983). Kristallografiya, 28, 889-895.]; Aldoshin et al., 1984[Aldoshin, S. M., Atovmyan, L. O. & Ponomarev, V. I. (1984). Khim. Fiz. 3, 787-791.]; Wozniak et al., 1995[Wozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7-85.]; Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]). The C—N, C=N and C—C bond lengths are normal and close to the values observed in related structures (Faizi et al., 2017a[Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38-40.],b[Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96-98.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.591 (6) 148
C7—H7⋯O2i 0.93 2.45 3.309 (8) 154
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular N—H⋯O hydrogen bond (see Table1), forming an S(6) ring motif, is shown as a dashed line.

3. Supra­molecular features

In the crystal packing of (I)[link], the most important inter­molecular inter­actions are weak C7—H7⋯O2i [symmetry code: (i) 1 − x, 1 − y, −[{1\over 2}] + z] hydrogen bonds between screw-related mol­ecules, which form helical chains propagating along the crystallographic screw axis parallel to c (Fig. 2[link], Table 1[link]). The shortest inter­molecular contact involving the iodine is 3.351 (5) Å, between glide-related mol­ecules, I1⋯O1ii [symmetry code: (ii) x + [{1\over 2}], [{1\over 2}] − y, −1 + z)], which makes a zigzag tape motif (Fig. 3[link]). There are no other significant inter­molecular inter­actions present in the crystal. The Hirshfeld surface analysis confirms the role of the C—H⋯O inter­actions in the packing arrangement.

[Figure 2]
Figure 2
A partial packing plot showing the C—H⋯O hydrogen-bonded (thick dashed lines) helical chains about the crystallographic 21 screw axis parallel to c.
[Figure 3]
Figure 3
A partial packing plot showing close contacts (dashed lines) between iodine and the phenolic oxygen of glide-related (x + [{1\over 2}], [{1\over 2}] − y, −1 + z) mol­ecules.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal packing of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (i.e., in close contact) or longer than the van der Waals radii sum, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The two-dimensional finger print plots are depicted in Fig. 5[link]. The O⋯H/H⋯O (26.9%) inter­actions form the majority of contacts, with H⋯H (22.0%) inter­actions representing the next highest contribution. The percentage contributions of other inter­actions are: I⋯H/H⋯I (16.3%), C⋯H/H⋯C (10.5%), C⋯C (8.7%), O⋯C/C⋯O (4.7%), N⋯C/C⋯N (3.8%), I⋯C/C⋯I (2.3%), H⋯N/N⋯H (1.4%), I⋯O/O⋯I (2.0%), I⋯N/N⋯I (0.6%), I⋯I (0.5%), O⋯N/N⋯O (0.2%), N⋯N (0.1%) and O⋯O (0.1%).

[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface along with dnorm full.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 26 hits for the (E)-2-{[(4-iodo­phen­yl)imino]­meth­yl}-phenol fragment. Of these 26, the most similar to (I)[link], are as follows. In p-iodo-N-(p-cyano­benzyl­idene)aniline (LALMEQ; Ojala et al., 1999[Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (1999). J. Chem. Crystallogr. 29, 27-32.]), the OH group is absent and the NO2 group is replaced by a cyano group. In (E)-5-(di­ethyl­amino)-2-[(4-iodo­phenyl­imino)­meth­yl]phenol (VEFPED; Kaştaş et al., 2012[Kaştaş, G., Albayrak, C., Odabaşoğlu, M. & Frank, R. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 94, 200-204.]), the NO2 is replaced by an N,N diethyl group. In N-(3,5-di-tert-butyl­salicyl­idene)-4-iodo­benzene; (MILFET; Spangenberg et al., 2007[Spangenberg, A., Sliwa, M., Métivier, R., Dagnélie, R., Brosseau, A., Nakatani, K., Pansu, R. & Malfant, I. (2007). J. Phys. Org. Chem. 20, 992-997.]), the NO2 group is absent but a pair of tBu groups occupy the 3,5 positions of the salicyl­idene group. In 2-{[(4-iodo­phen­yl)imino]­meth­yl}-6-meth­oxy­phenol (SEDBIP; Carletta, et al., 2017[Carletta, A., Spinelli, F., d'Agostino, S., Ventura, B., Chierotti, M. R., Gobetto, R., Wouters, J. & Grepioni, F. (2017). Chem. Eur. J. 23, 5317-5329.]), the NO2 group is absent and a meth­oxy group is ortho to the hydroxyl. Lastly, in N-(2-cyano­benzyl­idene)-4-iodo­aniline (XOXKIF; Ojala et al., 1999[Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (1999). J. Chem. Crystallogr. 29, 27-32.]) the NO2 is absent and the OH is replaced by cyano. All these compounds have an E configuration about the C=N bond and form the S(6) ring motif.

6. Synthesis and crystallization

The title compound was synthesized by condensation of 2-hy­droxy-5-nitro­benzaldehyde (11.0 mg, 0.066 mmol) and 4-iodo­aniline (14.4 mg, 0.066 mmol) in ethanol (15 ml). After the mixture had refluxed for about 15 h, the orange product was washed with ether and dried at room temperature (yield 60%, m.p. 484–486 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH hydrogen atoms and the C-bound H atoms were included in calculated positions and allowed to ride on the parent atoms: O—H = 0.82 Å, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H9IN2O3
Mr 368.12
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 12.8022 (4), 24.4556 (9), 4.1459 (1)
V3) 1298.02 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.47
Crystal size (mm) 0.42 × 0.34 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.944, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 15403, 2508, 2231
Rint 0.084
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.05
No. of reflections 2508
No. of parameters 173
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.25
Absolute structure Flack x determined using 814 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: X-AREA and X-SHAPE (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-SHAPE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), XP in SHELXTL (Sheldrick, 2008).

2-{[(4-Iodophenyl)imino]methyl}-4-nitrophenol top
Crystal data top
C13H9IN2O3Dx = 1.884 Mg m3
Mr = 368.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 25449 reflections
a = 12.8022 (4) Åθ = 1.7–29.9°
b = 24.4556 (9) ŵ = 2.47 mm1
c = 4.1459 (1) ÅT = 296 K
V = 1298.02 (7) Å3Prism, colorless
Z = 40.42 × 0.34 × 0.21 mm
F(000) = 712
Data collection top
STOE IPDS 2
diffractometer
2508 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2231 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.084
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.8°
rotation method scansh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3030
Tmin = 0.944, Tmax = 0.981l = 54
15403 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.81 e Å3
2508 reflectionsΔρmin = 0.25 e Å3
173 parametersAbsolute structure: Flack x determined using 814 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50544 (3)0.16672 (2)0.1482 (5)0.06914 (19)
O10.1141 (3)0.43513 (17)0.4285 (13)0.0721 (13)
H10.1488990.4076040.3932800.108*
N10.2784 (3)0.37325 (18)0.4176 (13)0.0605 (13)
C80.2751 (4)0.4584 (2)0.6892 (16)0.0575 (13)
C10.4310 (5)0.2352 (2)0.0459 (14)0.0578 (12)
C90.3293 (4)0.4960 (2)0.875 (2)0.0614 (12)
H90.3974720.4885880.9390160.074*
C130.1701 (4)0.4702 (2)0.6025 (17)0.0564 (12)
C110.1808 (4)0.5566 (2)0.870 (2)0.0688 (15)
H110.1510470.5899170.9264840.083*
C60.3291 (5)0.2321 (2)0.1458 (18)0.0689 (16)
H60.2930840.1991770.1302440.083*
C100.2824 (4)0.5444 (2)0.9636 (16)0.0618 (15)
O30.3034 (5)0.6282 (2)1.207 (2)0.120 (3)
N20.3421 (4)0.5833 (2)1.1596 (16)0.0751 (16)
C70.3254 (4)0.4086 (2)0.5862 (18)0.0592 (12)
H70.3944390.4022740.6456090.071*
C30.4358 (5)0.3296 (2)0.1943 (18)0.0654 (15)
H30.4721830.3624110.2111710.079*
C120.1245 (4)0.5192 (3)0.6944 (17)0.0655 (15)
H120.0558000.5268090.6369530.079*
C20.4847 (4)0.2839 (3)0.067 (2)0.0679 (16)
H20.5534870.2860560.0031960.082*
C40.3331 (4)0.3266 (2)0.2959 (17)0.0575 (15)
C50.2798 (4)0.2777 (2)0.2694 (15)0.0660 (18)
H50.2104810.2755320.3351850.079*
O20.4261 (4)0.5694 (2)1.2640 (15)0.0946 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0821 (3)0.0597 (3)0.0656 (3)0.01321 (13)0.0044 (3)0.0083 (2)
O10.0590 (19)0.063 (2)0.094 (4)0.0028 (16)0.007 (2)0.007 (2)
N10.061 (2)0.051 (2)0.069 (4)0.0033 (17)0.004 (2)0.002 (2)
C80.054 (3)0.052 (3)0.066 (4)0.002 (2)0.007 (3)0.004 (2)
C10.071 (3)0.049 (3)0.054 (3)0.009 (2)0.006 (3)0.002 (2)
C90.054 (2)0.060 (3)0.070 (4)0.0001 (18)0.001 (4)0.001 (3)
C130.056 (3)0.049 (3)0.064 (3)0.001 (2)0.004 (3)0.003 (3)
C110.067 (3)0.058 (3)0.081 (4)0.007 (2)0.022 (4)0.000 (4)
C60.070 (3)0.054 (3)0.083 (5)0.002 (2)0.006 (3)0.007 (3)
C100.064 (3)0.056 (3)0.066 (4)0.006 (2)0.010 (2)0.001 (2)
O30.111 (4)0.077 (3)0.171 (8)0.001 (3)0.007 (4)0.049 (4)
N20.074 (3)0.066 (3)0.085 (5)0.015 (2)0.014 (3)0.015 (3)
C70.057 (3)0.052 (3)0.068 (3)0.004 (2)0.001 (3)0.008 (3)
C30.068 (3)0.049 (3)0.079 (4)0.004 (2)0.001 (3)0.004 (2)
C120.054 (3)0.061 (3)0.081 (4)0.006 (2)0.003 (3)0.001 (3)
C20.059 (3)0.069 (4)0.075 (5)0.002 (2)0.005 (3)0.003 (4)
C40.062 (2)0.046 (2)0.064 (5)0.0059 (19)0.005 (3)0.002 (2)
C50.060 (3)0.060 (3)0.078 (5)0.003 (2)0.003 (3)0.005 (3)
O20.072 (2)0.088 (3)0.124 (6)0.012 (2)0.008 (3)0.028 (3)
Geometric parameters (Å, º) top
I1—C12.089 (5)C11—H110.9300
O1—C131.330 (7)C6—C51.381 (8)
O1—H10.8200C6—H60.9300
N1—C71.264 (8)C10—N21.466 (8)
N1—C41.430 (7)O3—N21.220 (8)
C8—C91.385 (9)N2—O21.208 (8)
C8—C131.421 (7)C7—H70.9300
C8—C71.444 (8)C3—C41.383 (8)
C1—C61.371 (9)C3—C21.385 (10)
C1—C21.377 (9)C3—H30.9300
C9—C101.377 (7)C12—H120.9300
C9—H90.9300C2—H20.9300
C13—C121.388 (8)C4—C51.381 (8)
C11—C121.373 (10)C5—H50.9300
C11—C101.389 (9)
C13—O1—H1109.5C11—C10—N2120.2 (5)
C7—N1—C4120.5 (5)O2—N2—O3123.8 (6)
C9—C8—C13118.7 (5)O2—N2—C10118.8 (5)
C9—C8—C7120.1 (5)O3—N2—C10117.4 (6)
C13—C8—C7121.2 (5)N1—C7—C8121.9 (5)
C6—C1—C2120.2 (6)N1—C7—H7119.1
C6—C1—I1120.4 (4)C8—C7—H7119.1
C2—C1—I1119.4 (4)C4—C3—C2120.2 (5)
C10—C9—C8120.0 (5)C4—C3—H3119.9
C10—C9—H9120.0C2—C3—H3119.9
C8—C9—H9120.0C11—C12—C13120.0 (5)
O1—C13—C12118.6 (5)C11—C12—H12120.0
O1—C13—C8121.1 (5)C13—C12—H12120.0
C12—C13—C8120.2 (5)C1—C2—C3119.8 (6)
C12—C11—C10119.8 (5)C1—C2—H2120.1
C12—C11—H11120.1C3—C2—H2120.1
C10—C11—H11120.1C5—C4—C3119.4 (5)
C1—C6—C5120.1 (6)C5—C4—N1118.5 (5)
C1—C6—H6119.9C3—C4—N1122.1 (5)
C5—C6—H6119.9C6—C5—C4120.2 (5)
C9—C10—C11121.2 (6)C6—C5—H5119.9
C9—C10—N2118.6 (5)C4—C5—H5119.9
C13—C8—C9—C101.8 (10)C4—N1—C7—C8174.5 (6)
C7—C8—C9—C10177.8 (7)C9—C8—C7—N1179.8 (6)
C9—C8—C13—O1179.1 (6)C13—C8—C7—N10.5 (10)
C7—C8—C13—O11.3 (9)C10—C11—C12—C131.9 (11)
C9—C8—C13—C122.0 (9)O1—C13—C12—C11179.1 (7)
C7—C8—C13—C12177.7 (6)C8—C13—C12—C110.1 (10)
C2—C1—C6—C50.2 (10)C6—C1—C2—C30.9 (11)
I1—C1—C6—C5179.0 (5)I1—C1—C2—C3179.7 (6)
C8—C9—C10—C110.1 (10)C4—C3—C2—C10.7 (12)
C8—C9—C10—N2179.9 (6)C2—C3—C4—C50.0 (11)
C12—C11—C10—C92.1 (11)C2—C3—C4—N1177.7 (7)
C12—C11—C10—N2178.2 (7)C7—N1—C4—C5146.2 (7)
C9—C10—N2—O27.4 (10)C7—N1—C4—C336.1 (10)
C11—C10—N2—O2172.8 (7)C1—C6—C5—C40.6 (10)
C9—C10—N2—O3172.4 (7)C3—C4—C5—C60.7 (10)
C11—C10—N2—O37.4 (10)N1—C4—C5—C6178.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.591 (6)148
C7—H7···O2i0.932.453.309 (8)154
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, India, for providing laboratory facilities.

Funding information

The authors thank the Faculty of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen for financial support. Funding for this research was provided by astart-up grant from the University Grants Commission (India).

References

First citationAlarcón, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240.  Web of Science CrossRef Google Scholar
First citationAldoshin, S. M., Atovmyan, L. O. & Ponomarev, V. I. (1984). Khim. Fiz. 3, 787–791.  CAS Google Scholar
First citationCarletta, A., Spinelli, F., d'Agostino, S., Ventura, B., Chierotti, M. R., Gobetto, R., Wouters, J. & Grepioni, F. (2017). Chem. Eur. J. 23, 5317–5329.  CSD CrossRef CAS PubMed Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Osório, F. A. P. & Valverde, C. (2020). J. Mol. Struct. 1210, 128039–464.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A. (2005). J. Phys. Org. Chem. 18, 686–698.  Web of Science CrossRef CAS Google Scholar
First citationFilipenko, O. S., Ponomarev, V. I., Bolotin, B. M. & Atovmyan, L. O. (1983). Kristallografiya, 28, 889–895.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIwan, A., Kaczmarczyk, B., Janeczek, H., Sek, D. & Ostrowski, S. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1030–1041.  Web of Science CrossRef PubMed Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKaştaş, G., Albayrak, C., Odabaşoğlu, M. & Frank, R. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 94, 200–204.  PubMed Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationOjala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (1999). J. Chem. Crystallogr. 29, 27–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationOzeryanskii, V. A., Pozharskii, A. F., Schilf, W., Kamieński, B., Sawka-Dobrowolska, W., Sobczyk, L. & Grech, E. (2006). Eur. J. Org. Chem. pp. 782–790.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpangenberg, A., Sliwa, M., Métivier, R., Dagnélie, R., Brosseau, A., Nakatani, K., Pansu, R. & Malfant, I. (2007). J. Phys. Org. Chem. 20, 992–997.  CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWozniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 7–85.  CSD CrossRef Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141–148.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds