research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1,4-di­phenyl-4H-1,2,4-triazol-3-yl)phenyl­amine di­fluoro­phosphate, and a survey of the di­fluoro­phosphate anion (PO2F2)

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 15 May 2020; accepted 22 May 2020; online 2 June 2020)

Nitron is the trivial name of (1,4-diphenyl-4H-1,2,4-triazol-3-yl)phenyl­amine (C20H16N4), a triazole derivative used as an analytical reagent for gravimetric analysis of the nitrate anion. The crystal structure of the di­fluoro­phosphate salt of Nitron, 3-anilino-1,4-diphenyl-1H-1,2,4-triazol-4-ium di­fluoro­phosphate, C20H17N4+·PO2F2, is reported here. Within the protonated Nitron mol­ecule, the triazole ring, one of the phenyl rings and the NHPh moiety are virtually co-planar, with the third phenyl ring inclined to the least-squares plane of the other three rings by 56.07 (3)°. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds between cations and di­fluoro­phosphate anions lead to the formation of a three-dimensional network that is consolidated by additional ππ stacking inter­actions between the triazole ring and one of the phenyl rings. Database surveys on inorganic, metal–organic and organic structures comprising the tetra­hedral PO2F2 group reveal mean bond lengths of P—O = 1.459 (27) Å, P—F = 1.530 (21) Å, and angles of O—P—O = 121.2 (2.9)°, O—P—F = 108.7 (6)°, and F—P—F = 98.5 (2.6)°, using a dataset of 67 independent PO2F2 anions or PO2F2 entities.

1. Chemical context

Nitron is the trivial name for the triazole derivative (1,4-diphenyl-4H-1,2,4-triazol-3-yl)phenyl­amine, C20H16N4, that shows tautomerism and can be present in its zwitterionic form (I) or its NHC-type carbenic form (II) (Fig. 1[link]). Nitron has been utilized as a reagent for gravimetric analysis of the nitrate anion (`Busch's reagent'; Busch, 1905[Busch, M. (1905). Ber. Dtsch. Chem. Ges. 38, 861-866.]) from slightly acidic solutions under formation of the salt C20H17N4+·NO3. In recent years, inexpensive Nitron was rediscovered as a stable N-heterocyclic carbene (Färber et al., 2012[Färber, C., Leibold, M., Bruhn, C., Maurer, M. & Siemeling, U. (2012). Chem. Commun. 48, 227-229.]) that can be reacted with several coinage or other noble metals to yield corresponding metal complexes (Hitzel et al., 2014[Hitzel, S., Färber, C., Bruhn, C. & Siemeling, U. (2014). Organometallics, 33, 425-428.]; Thie et al., 2016[Thie, C., Hitzel, S., Wallbaum, L., Bruhn, C. & Siemeling, U. (2016). J. Organomet. Chem. 821, 112-121.]). The Nitron salt of di­fluoro­phospho­ric acid, C20H17N4+·PO2F2 (III) was reported by Lange more than 90 years ago (Lange, 1929[Lange, W. (1929). Ber. Dtsch. Chem. Ges. A/B, 62, 786-792.]). It can be used as a precursor for obtaining di­fluoro­phosphates of several metals or other cations through metathesis reactions.

[Scheme 1]
[Figure 1]
Figure 1
Structure of zwitterionic Nitron (I), and of its NHC-carbene tautomer (II).

The synthesis, crystallization and structure analysis of III are reported here, together with a survey of the structural characteristics of the di­fluoro­phosphate anion present in inorganic, metal–organic and organic compounds.

2. Structural commentary

The asymmetric unit of III is composed of a Nitron mol­ecule protonated at the C1 atom of the triazole ring, assuming the NHC-type tautomer II to be prevalent in Nitron itself, and a PO2F2 anion (Fig. 2[link]).

[Figure 2]
Figure 2
The asymmetric unit of III, showing the mol­ecular components with displacement ellipsoids for non-H atoms drawn at the 75% probability level. H atoms are given as spheres of arbitrary radius; N—H⋯O hydrogen bonding between the organic cation and the inorganic anion is shown as a light-blue dashed line.

The central triazole ring (C1, C2, N1–N3), the phenyl ring attached to N2 (C9–C14) and the NHPh moiety attached to C2 (N4, C15–C20) are virtually co-planar with the r.m.s. deviation of the 18 non-H atoms being 0.0666 Å [greatest deviation 0.1250 (13) Å for the phenyl C19 atom]. The third phenyl ring (C3–C8) is inclined to the least-squares plane of the three aforementioned rings by 56.07 (3)° (Fig. 2[link]). A weak intra­molecular hydrogen bond between a phenyl C—H group (C16—H16) and the free N atom (N1) of the triazole cycle stabilizes the conformation of the mol­ecule (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.02 2.9576 (17) 168
C20—H20⋯O2 0.95 2.44 3.2291 (17) 140
C16—H16⋯N1 0.95 2.22 2.8700 (18) 124
C10—H10⋯O1i 0.95 2.45 3.3673 (17) 161
N4—H1N⋯O2 0.857 (19) 2.025 (19) 2.8614 (16) 165.0 (17)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

In III, the tetra­hedral di­fluoro­phosphate anion shows the characteristic bond lengths distribution (Table 2[link]) between two shorter P—O bonds (mean 1.468 Å) and two considerably longer P—F bonds (mean 1.554 Å). The distortion of the anion is evident not only by the two pairs of different bond lengths but even more so by the bond angles that partly deviate considerably from the ideal value of 109.47°. Whereas the O1—P—O2 angle is enlarged by about 14° relative to the ideal value, the F1—P—F2 angle is reduced by about 12°; the four O—P—F angles are rather similar, with a mean of 108.3°.

Table 2
Selected geometric parameters (Å, °)

P1—O1 1.4684 (11) P1—F2 1.5510 (10)
P1—O2 1.4686 (11) P1—F1 1.5568 (10)
       
O1—P1—O2 123.22 (6) O1—P1—F1 108.21 (6)
O1—P1—F2 107.75 (6) O2—P1—F1 108.10 (6)
O2—P1—F2 109.20 (6) F2—P1—F1 97.26 (7)

3. Supra­molecular features

Aside from Coulombic inter­actions, the cation is hydrogen-bonded by an N—H⋯O inter­action of medium strength between the amino group (N4) of the NHPh moiety and one of the O atoms (O2) of the di­fluoro­phosphate anion. The other O atom (O1) of the anion is the acceptor atom of a weak C—H⋯O hydrogen bond with the protonated carbene C1 atom as the donor group. F atoms are not involved in hydrogen bonding, as frequently observed for related compounds containing the mono­fluoro­phosphate anion PO3F2– (Weil et al., 2015[Weil, M., Baran, E. J., Kremer, R. K. & Libowitzky, E. (2015). Z. Anorg. Allg. Chem. 641, 184-191.]). The two types of hydrogen-bonding inter­actions link the cations and anions into a three-dimensional network structure. Additional ππ stacking between the triazole ring (Cg1) and the phenyl ring C15–C20 (Cg2) with a centroid-to-centroid distance of Cg1⋯Cg2(2 − x, 1 − y, 1 − z) = 3.5378 (9) Å and a slippage of 0.643 Å consolidates the packing (Fig. 3[link]).

[Figure 3]
Figure 3
The packing of the organic cations and the inorganic anions in the crystal structure of III in a view along [001]. Inter­molecular N—H⋯O and C—H⋯O bonds are shown as light-blue and magenta dashed lines, and ππ stacking inter­actions by green dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Nitron revealed 17 hits, including various coinage metal complexes of Nitron (EJEZOK, EJICEH, EJICOR, EJIPOE, EJIPUK, EJIQAR, EJIQEV, EJIXOM; Thie et al., 2016[Thie, C., Hitzel, S., Wallbaum, L., Bruhn, C. & Siemeling, U. (2016). J. Organomet. Chem. 821, 112-121.]), with selenium bonded to the carbene C atom (EJICIL; Thie et al., 2016[Thie, C., Hitzel, S., Wallbaum, L., Bruhn, C. & Siemeling, U. (2016). J. Organomet. Chem. 821, 112-121.]), rhodium complexes (NITLAF, NITLUZ, SAKNAV, SAKNEZ; Hitzel et al., 2014[Hitzel, S., Färber, C., Bruhn, C. & Siemeling, U. (2014). Organometallics, 33, 425-428.], Färber et al., 2012[Färber, C., Leibold, M., Bruhn, C., Maurer, M. & Siemeling, U. (2012). Chem. Commun. 48, 227-229.]), with a carbodi­thio­ate group attached (SAKNID; Färber et al., 2012[Färber, C., Leibold, M., Bruhn, C., Maurer, M. & Siemeling, U. (2012). Chem. Commun. 48, 227-229.]), and isotypic ethyl­enedi­amino­tetra-acetato­aluminate and -gallate complexes (FADJIE, FADJUQ; Ilyukhin & Petrosyant, 2001[Ilyukhin, A. B. & Petrosyants, S. P. (2001). Crystallogr. Rep. 46, 771-778.]). The structure of the hydro­chloride methanol solvate of Nitron (NITLEJ; Hitzel et al., 2014[Hitzel, S., Färber, C., Bruhn, C. & Siemeling, U. (2014). Organometallics, 33, 425-428.]) is the most similar in comparison to I because it shows no direct coordination to a metal and is not derivatized. In (Nitron)+Cl· CH3OH, the central triazole ring is co-planar with only one phenyl ring (attached to N2). The second phenyl ring (attached to N3) and the NHPh moiety (attached to C2) are inclined to the mean plane by 48.13 (7) and 31.42 (6)°, respectively. The chloride anion is hydrogen-bonded through N—H⋯Cl and O—H⋯Cl inter­actions to the protonated Nitron mol­ecule and the methanol solvent mol­ecule, respectively. In all structures comprising Nitron, the N atom (equivalent to N4 in the title structure) is protonated like in II.

A search of the Inorganic Crystal Structure Database (ICSD; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) and the CSD for the di­fluoro­phosphate anion or the PO2F2 entity revealed the crystal structures of twelve inorganic and 30 metal–organic or organic compounds (Table 3[link]). For a statistical analysis of bond lengths and angles within a PO2F2 tetra­hedron, only ordered PO2F2 groups were considered. In summary, 67 independent PO2F2 tetra­hedra were used, leading to the following averaged bond lengths and angles: P—O = 1.459 (27) Å, P—F = 1.530 (21) Å; O—P—O = 121.2 (2.9)°, O—P—F = 108.7 (6)°, F—P—F = 98.5 (2.6)°. It is evident that the bond lengths and angles observed in III (Table 2[link]) fall within these limits.

Table 3
Averaged bond lengths (Å) and angles (°) in PO2F2 tetra­hedra present in several compounds

Compound Independent PO2F2 groups P—O P—F O—P—O O—P—F F—P—F
NH4PO2F2a 1 1.457 1.541 118.7 109.5 98.6
KPO2F2b 1 1.470 1.575 122.4 108.7 97.1
CsPO2F2c 1 1.480 1.545 121.0 108.5 99.0
LiB(PO2F2)4d 4 (1 disordered) 1.483 1.520 119.7 108.6 100.5
AgPO2F2e 3 1.459 1.511 119.9 108.1 103.3
AgI4AgII5(PO2F2)14e 7 1.481 1.511 117.8 109.4 99.9
Cu(PO2F2)2f 3 1.450 1.496 119.1 109.5 97.6
Cs2Fe2F3(PO3F)2(PO2F2)g 1 1.512 1.555 117.8 108.2 106.2
KFe2(PO2F2)(PO3F)2F2g 1 1.509 1.569 115.6 109.3 103.4
SbF4(PO2F2)h 1 1.500 1.500 117.4 108.5 104.6
(NH4)Mn3(PO3F)2(PO2F2)F2i 1 1.482 1.572 116.6 109.8 100.0
(NH4)Co3(PO3F)2(PO2F2)F2i 1 1.486 1.554 114.9 110.1 100.8
Organic and metal–organic compoundsj 42 1.449 1.532 122.3 108.5 97.5
(a) Harrison & Trotter (1969[Harrison, R. W. & Trotter, J. (1969). J. Chem. Soc. A, pp. 1783-1787.]); (b) Harrison et al. (1966[Harrison, R. W., Thompson, R. C. & Trotter, J. (1966). J. Chem. Soc. A, pp. 1775-1780.]); (c) Trotter & Whitlow (1967[Trotter, J. & Whitlow, S. H. (1967). J. Chem. Soc. A, pp. 1383-1386.]); (d) Schulz et al. (2015[Schulz, C., Eiden, P., Klose, P., Ermantraut, A., Schmidt, M., Garsuch, A. & Krossing, I. (2015). Dalton Trans. 44, 7048-7057.]); (e) Malinowski et al. (2015[Malinowski, P. J., Kurzydłowski, D. & Grochala, W. (2015). Dalton Trans. 44, 19478-19486.]); (f) Begley et al. (1985[Begley, M. J., Dove, M. F. A., Hibbert, R. C., Logan, N., Nunn, M. & Sowerby, D. B. (1985). J. Chem. Soc. Dalton Trans. pp. 2433-2436.]); (g) Keates et al. (2013[Keates, A. C., Armstrong, J. A. & Weller, M. T. (2013). Dalton Trans. 42, 10715-10724.]); (h) Schneider et al. (2001[Schneider, S., Vij, A., Sheehy, J. A., Tham, F. S., Schroer, T. & Christe, K. O. (2001). Z. Anorg. Allg. Chem. 627, 631-637.]); (i) Jiang et al. (2020[Jiang, J., Zhu, B., Zhu, T., Yang, H., Jin, Y. & Lü, M. (2020). Dalton Trans. 49, 841-849.]); (j) A detailed list of entries for these compounds is given in Table S1 of the supporting information.

5. Synthesis and crystallization

In a nickel crucible, P2O5 (2.67 g) and NH4F (1.86 g) were thoroughly mixed. The open crucible was placed on a hot plate (≃ 420 K) where a vehement reaction took place within a few seconds. The crucible was then taken from the plate and cooled to room temperature. The obtained solid was dissolved in 50 ml water to which ammonia solution (25%wt) was added until neutralisation. Subsequently, the pH was adjusted to ca. 5 with a few drops of glacial acetic acid. Nitron (3 g) was then added in small portions to the cooled (273 K) acetic solution under constant stirring for about two h. The formed solid was separated by suction filtration and recrystallized from diluted acetic acid solution. Storing the solution in a refrigerator at 280 K overnight resulted in the formation of light-brown crystals of the title compound with a rod-like form; yield 60%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atom attached to N1 was discernible in a difference-Fourier map and was refined freely.

Table 4
Experimental details

Crystal data
Chemical formula C20H17N4+·PO2F2
Mr 414.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.3811 (5), 14.9963 (9), 16.9217 (10)
β (°) 102.138 (2)
V3) 1831.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.50 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.701, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30253, 5325, 4077
Rint 0.046
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.03
No. of reflections 5325
No. of parameters 266
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

3-Anilino-1,4-diphenyl-1H-1,2,4-triazol-4-ium difluorophosphate top
Crystal data top
C20H17N4+·PO2F2F(000) = 856
Mr = 414.35Dx = 1.503 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3811 (5) ÅCell parameters from 7088 reflections
b = 14.9963 (9) Åθ = 2.5–29.9°
c = 16.9217 (10) ŵ = 0.20 mm1
β = 102.138 (2)°T = 100 K
V = 1831.2 (2) Å3Bar, light-brown
Z = 40.50 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4077 reflections with I > 2σ(I)
ω– and f–scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.0°, θmin = 2.5°
Tmin = 0.701, Tmax = 0.746h = 1010
30253 measured reflectionsk = 2121
5325 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.7893P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5325 reflectionsΔρmax = 0.38 e Å3
266 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.92663 (5)0.62394 (2)0.23419 (2)0.01781 (9)
F11.02420 (15)0.53730 (7)0.27209 (7)0.0427 (3)
F20.82504 (15)0.58249 (8)0.15294 (6)0.0399 (3)
O11.06913 (14)0.68482 (7)0.21683 (6)0.0215 (2)
O20.78943 (15)0.65005 (7)0.28139 (6)0.0256 (2)
N10.67953 (16)0.42442 (7)0.49191 (7)0.0167 (2)
N20.60128 (16)0.34410 (7)0.46219 (7)0.0159 (2)
N30.59412 (16)0.42525 (7)0.35731 (7)0.0160 (2)
N40.74014 (17)0.55678 (8)0.42288 (7)0.0172 (2)
C10.55145 (19)0.34448 (9)0.38303 (8)0.0173 (3)
H10.4955590.2965720.3499460.021*
C20.67538 (18)0.47308 (9)0.42636 (8)0.0154 (3)
C30.55076 (19)0.45013 (9)0.27301 (8)0.0164 (3)
C40.6100 (2)0.39458 (9)0.21783 (8)0.0192 (3)
H40.6865290.3444840.2355660.023*
C50.5545 (2)0.41403 (10)0.13613 (8)0.0223 (3)
H50.5929020.3767660.0973120.027*
C60.4434 (2)0.48749 (10)0.11080 (9)0.0234 (3)
H60.4053640.5000380.0547320.028*
C70.3878 (2)0.54265 (10)0.16687 (9)0.0228 (3)
H70.3130890.5933520.1491220.027*
C80.4405 (2)0.52423 (9)0.24886 (8)0.0201 (3)
H80.4020260.5615590.2876050.024*
C90.58060 (18)0.27329 (9)0.51670 (8)0.0161 (3)
C100.4911 (2)0.19539 (9)0.48580 (8)0.0199 (3)
H100.4453500.1884990.4293180.024*
C110.4701 (2)0.12795 (10)0.53908 (9)0.0221 (3)
H110.4106260.0739310.5188670.027*
C120.5349 (2)0.13848 (10)0.62172 (9)0.0221 (3)
H120.5175370.0923640.6578980.026*
C130.6250 (2)0.21647 (10)0.65123 (9)0.0242 (3)
H130.6700210.2235520.7077420.029*
C140.6498 (2)0.28444 (10)0.59862 (8)0.0210 (3)
H140.7132960.3375920.6186050.025*
C150.82708 (19)0.60945 (9)0.48991 (8)0.0162 (3)
C160.8404 (2)0.58403 (9)0.57031 (8)0.0200 (3)
H160.7923040.5282520.5828330.024*
C170.9249 (2)0.64124 (10)0.63198 (9)0.0226 (3)
H170.9334530.6238200.6866190.027*
C180.9968 (2)0.72284 (9)0.61568 (9)0.0214 (3)
H181.0526840.7615400.6583290.026*
C190.9854 (2)0.74688 (10)0.53521 (9)0.0211 (3)
H191.0360190.8021510.5229320.025*
C200.9009 (2)0.69113 (9)0.47280 (8)0.0198 (3)
H200.8933750.7086270.4182430.024*
H1N0.741 (3)0.5776 (12)0.3758 (11)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02253 (19)0.01490 (16)0.01649 (17)0.00094 (14)0.00522 (14)0.00142 (13)
F10.0456 (6)0.0255 (5)0.0631 (7)0.0121 (5)0.0255 (6)0.0221 (5)
F20.0414 (6)0.0531 (7)0.0280 (5)0.0244 (5)0.0132 (4)0.0184 (5)
O10.0245 (5)0.0200 (5)0.0200 (5)0.0034 (4)0.0045 (4)0.0023 (4)
O20.0291 (6)0.0270 (6)0.0231 (5)0.0005 (5)0.0110 (5)0.0005 (4)
N10.0190 (6)0.0140 (5)0.0175 (5)0.0006 (4)0.0049 (5)0.0010 (4)
N20.0175 (6)0.0137 (5)0.0169 (5)0.0000 (4)0.0043 (4)0.0015 (4)
N30.0184 (6)0.0155 (5)0.0144 (5)0.0009 (4)0.0040 (4)0.0012 (4)
N40.0225 (6)0.0151 (5)0.0147 (5)0.0011 (5)0.0056 (5)0.0001 (4)
C10.0187 (6)0.0160 (6)0.0178 (6)0.0007 (5)0.0049 (5)0.0010 (5)
C20.0151 (6)0.0168 (6)0.0148 (6)0.0020 (5)0.0044 (5)0.0019 (5)
C30.0173 (6)0.0173 (6)0.0145 (6)0.0011 (5)0.0033 (5)0.0008 (5)
C40.0216 (7)0.0184 (6)0.0178 (6)0.0015 (5)0.0049 (5)0.0010 (5)
C50.0253 (7)0.0255 (7)0.0170 (6)0.0019 (6)0.0066 (6)0.0028 (5)
C60.0222 (7)0.0305 (8)0.0168 (6)0.0036 (6)0.0025 (6)0.0034 (6)
C70.0198 (7)0.0235 (7)0.0239 (7)0.0033 (6)0.0020 (6)0.0063 (6)
C80.0203 (7)0.0195 (7)0.0208 (7)0.0020 (5)0.0054 (6)0.0015 (5)
C90.0160 (6)0.0149 (6)0.0184 (6)0.0011 (5)0.0064 (5)0.0015 (5)
C100.0232 (7)0.0191 (7)0.0174 (6)0.0025 (5)0.0045 (5)0.0016 (5)
C110.0242 (7)0.0184 (7)0.0243 (7)0.0033 (6)0.0062 (6)0.0017 (5)
C120.0235 (7)0.0209 (7)0.0221 (7)0.0018 (6)0.0057 (6)0.0052 (5)
C130.0289 (8)0.0243 (7)0.0184 (7)0.0047 (6)0.0026 (6)0.0012 (5)
C140.0255 (7)0.0183 (7)0.0188 (7)0.0041 (6)0.0038 (6)0.0014 (5)
C150.0152 (6)0.0157 (6)0.0179 (6)0.0022 (5)0.0037 (5)0.0019 (5)
C160.0251 (7)0.0163 (6)0.0185 (6)0.0010 (6)0.0042 (6)0.0011 (5)
C170.0287 (8)0.0201 (7)0.0180 (6)0.0005 (6)0.0027 (6)0.0004 (5)
C180.0234 (7)0.0168 (6)0.0219 (7)0.0013 (6)0.0002 (6)0.0034 (5)
C190.0225 (7)0.0149 (6)0.0256 (7)0.0012 (5)0.0044 (6)0.0001 (5)
C200.0232 (7)0.0182 (6)0.0190 (7)0.0001 (5)0.0064 (6)0.0008 (5)
Geometric parameters (Å, º) top
P1—O11.4684 (11)C7—H70.9500
P1—O21.4686 (11)C8—H80.9500
P1—F21.5510 (10)C9—C141.3832 (18)
P1—F11.5568 (10)C9—C101.3890 (19)
N1—C21.3227 (17)C10—C111.385 (2)
N1—N21.3840 (15)C10—H100.9500
N2—C11.3124 (17)C11—C121.389 (2)
N2—C91.4356 (17)C11—H110.9500
N3—C11.3467 (17)C12—C131.386 (2)
N3—C21.3944 (16)C12—H120.9500
N3—C31.4439 (16)C13—C141.391 (2)
N4—C21.3488 (17)C13—H130.9500
N4—C151.4200 (17)C14—H140.9500
N4—H1N0.857 (19)C15—C201.3957 (19)
C1—H10.9500C15—C161.3962 (18)
C3—C81.3870 (19)C16—C171.3930 (19)
C3—C41.3887 (19)C16—H160.9500
C4—C51.3877 (19)C17—C181.385 (2)
C4—H40.9500C17—H170.9500
C5—C61.386 (2)C18—C191.394 (2)
C5—H50.9500C18—H180.9500
C6—C71.385 (2)C19—C201.3878 (19)
C6—H60.9500C19—H190.9500
C7—C81.3877 (19)C20—H200.9500
O1—P1—O2123.22 (6)C3—C8—H8120.7
O1—P1—F2107.75 (6)C7—C8—H8120.7
O2—P1—F2109.20 (6)C14—C9—C10121.68 (13)
O1—P1—F1108.21 (6)C14—C9—N2119.20 (12)
O2—P1—F1108.10 (6)C10—C9—N2119.12 (12)
F2—P1—F197.26 (7)C11—C10—C9118.60 (13)
C2—N1—N2103.95 (10)C11—C10—H10120.7
C1—N2—N1111.91 (11)C9—C10—H10120.7
C1—N2—C9127.89 (12)C10—C11—C12120.69 (14)
N1—N2—C9120.19 (11)C10—C11—H11119.7
C1—N3—C2106.29 (11)C12—C11—H11119.7
C1—N3—C3122.23 (11)C13—C12—C11119.78 (13)
C2—N3—C3131.44 (11)C13—C12—H12120.1
C2—N4—C15125.98 (12)C11—C12—H12120.1
C2—N4—H1N116.8 (12)C12—C13—C14120.39 (13)
C15—N4—H1N116.7 (12)C12—C13—H13119.8
N2—C1—N3107.41 (12)C14—C13—H13119.8
N2—C1—H1126.3C9—C14—C13118.84 (13)
N3—C1—H1126.3C9—C14—H14120.6
N1—C2—N4127.16 (12)C13—C14—H14120.6
N1—C2—N3110.42 (11)C20—C15—C16119.42 (12)
N4—C2—N3122.41 (12)C20—C15—N4116.94 (12)
C8—C3—C4122.04 (13)C16—C15—N4123.64 (12)
C8—C3—N3119.51 (12)C17—C16—C15119.38 (13)
C4—C3—N3118.27 (12)C17—C16—H16120.3
C5—C4—C3118.36 (13)C15—C16—H16120.3
C5—C4—H4120.8C18—C17—C16121.67 (13)
C3—C4—H4120.8C18—C17—H17119.2
C6—C5—C4120.43 (14)C16—C17—H17119.2
C6—C5—H5119.8C17—C18—C19118.44 (13)
C4—C5—H5119.8C17—C18—H18120.8
C7—C6—C5120.29 (13)C19—C18—H18120.8
C7—C6—H6119.9C20—C19—C18120.86 (13)
C5—C6—H6119.9C20—C19—H19119.6
C6—C7—C8120.31 (14)C18—C19—H19119.6
C6—C7—H7119.8C19—C20—C15120.22 (13)
C8—C7—H7119.8C19—C20—H20119.9
C3—C8—C7118.56 (13)C15—C20—H20119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.022.9576 (17)168
C20—H20···O20.952.443.2291 (17)140
C16—H16···N10.952.222.8700 (18)124
C10—H10···O1i0.952.453.3673 (17)161
N4—H1N···O20.857 (19)2.025 (19)2.8614 (16)165.0 (17)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Averaged bond lengths (Å) and angles (°) in PO2F2 tetrahedra present in several compounds top
CompoundIndependent PO2F2 groupsP—OP—FO—P—OO—P—FF—P—F
NH4PO2F2a11.4571.541118.7109.598.6
KPO2F2b11.4701.575122.4108.797.1
CsPO2F2c11.4801.545121.0108.599.0
LiB(PO2F2)4d4 (1 disordered)1.4831.520119.7108.6100.5
AgPO2F2e31.4591.511119.9108.1103.3
AgI4AgII5(PO2F2)14e71.4811.511117.8109.499.9
Cu(PO2F2)2f31.4501.496119.1109.597.6
Cs2Fe2F3(PO3F)2(PO2F2)g11.5121.555117.8108.2106.2
KFe2(PO2F2)(PO3F)2F2g11.5091.569115.6109.3103.4
SbF4(PO2F2)h11.5001.500117.4108.5104.6
(NH4)Mn3(PO3F)2(PO2F2)F2i11.4821.572116.6109.8100.0
(NH4)Co3(PO3F)2(PO2F2)F2i11.4861.554114.9110.1100.8
Organic and metal–organic compoundsj421.4491.532122.3108.597.5
(a) Harrison & Trotter (1969); (b) Harrison et al. (1966); (c) Trotter & Whitlow (1967); (d) Schulz et al. (2015); (e) Malinowski et al. (2015); (f) Begley et al. (1985); (g) Keates et al. (2013); (h) Schneider et al. (2001); (i) Jiang et al. (2020); (j) A detailed list of entries for these compounds is given in Table S1 of the supporting information.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support and access to the single-crystal X-ray diffractometer.

References

First citationBegley, M. J., Dove, M. F. A., Hibbert, R. C., Logan, N., Nunn, M. & Sowerby, D. B. (1985). J. Chem. Soc. Dalton Trans. pp. 2433–2436.  CSD CrossRef ICSD Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusch, M. (1905). Ber. Dtsch. Chem. Ges. 38, 861–866.  CrossRef CAS Google Scholar
First citationFärber, C., Leibold, M., Bruhn, C., Maurer, M. & Siemeling, U. (2012). Chem. Commun. 48, 227–229.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, R. W., Thompson, R. C. & Trotter, J. (1966). J. Chem. Soc. A, pp. 1775–1780.  CrossRef ICSD Web of Science Google Scholar
First citationHarrison, R. W. & Trotter, J. (1969). J. Chem. Soc. A, pp. 1783–1787.  CrossRef ICSD Web of Science Google Scholar
First citationHitzel, S., Färber, C., Bruhn, C. & Siemeling, U. (2014). Organometallics, 33, 425–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationIlyukhin, A. B. & Petrosyants, S. P. (2001). Crystallogr. Rep. 46, 771–778.  Web of Science CrossRef Google Scholar
First citationJiang, J., Zhu, B., Zhu, T., Yang, H., Jin, Y. & Lü, M. (2020). Dalton Trans. 49, 841–849.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationKeates, A. C., Armstrong, J. A. & Weller, M. T. (2013). Dalton Trans. 42, 10715–10724.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLange, W. (1929). Ber. Dtsch. Chem. Ges. A/B, 62, 786–792.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalinowski, P. J., Kurzydłowski, D. & Grochala, W. (2015). Dalton Trans. 44, 19478–19486.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchneider, S., Vij, A., Sheehy, J. A., Tham, F. S., Schroer, T. & Christe, K. O. (2001). Z. Anorg. Allg. Chem. 627, 631–637.  Web of Science CrossRef ICSD CAS Google Scholar
First citationSchulz, C., Eiden, P., Klose, P., Ermantraut, A., Schmidt, M., Garsuch, A. & Krossing, I. (2015). Dalton Trans. 44, 7048–7057.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThie, C., Hitzel, S., Wallbaum, L., Bruhn, C. & Siemeling, U. (2016). J. Organomet. Chem. 821, 112–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrotter, J. & Whitlow, S. H. (1967). J. Chem. Soc. A, pp. 1383–1386.  CrossRef ICSD Web of Science Google Scholar
First citationWeil, M., Baran, E. J., Kremer, R. K. & Libowitzky, E. (2015). Z. Anorg. Allg. Chem. 641, 184–191.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds