research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 1:1 co-crystal of the anti­cancer drug gefitinib with azelaic acid

CROSSMARK_Color_square_no_text.svg

aPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India, and bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
*Correspondence e-mail: rg.gonnade@ncl.res.in

Edited by S. Parkin, University of Kentucky, USA (Received 8 May 2020; accepted 18 May 2020; online 22 May 2020)

In the title co-crystal, C22H24ClFN4O3·C9H16O4, gefitinib (GTB; systematic name: quinazolin-4-amine) co-crystallizes with azelaic acid (AA; systematic name: nona­nedioic acid). The co-crystal has the monoclinic P21/n centrosymmetric space group, containing one mol­ecule each of GTB and AA in the asymmetric unit. A structure overlay of the GTB mol­ecule in the co-crystal with that of its most stable polymorph revealed a significant difference in the conformation of the morpholine moiety. The significant deviation in the conformation of one of the acidic groups of azelaic acid from its usual linear chain structure could be due to the encapsulation of one acidic group in the pocket formed between the two pincers of GTB namely, the morpholine and phenyl moieties. Both GTB and AA mol­ecules form N—H⋯O, O—H⋯N, C—H⋯O hydrogen bonds with C—H⋯F close contacts along with off-stacked aromatic ππ inter­actions between the GTB mol­ecules.

1. Chemical context

Gefitinib (GTB, Iressa) is an orally administered chemotherapy treatment drug that inhibits tyrosine kinase (an enzyme that transports phosphates from ATP to the tyrosine residue of a protein) (Kobayashi & Hagiwara, 2013[Kobayashi, K. & Hagiwara, K. (2013). Targ Oncol, 8, 27-33.]) for non-small-cell lung cancer (NSCLC), pancreatic cancer, breast cancer and several other types of cancer. Two polymorphs of GTB have been reported from our group previously, both of which crystallized in the triclinic P[\overline{1}] space group (Thorat et al., 2014[Thorat, S. H., Patwadkar, M. V., Gonnade, R. G. & Vaidhyanathan, R. (2014). CrystEngComm, 16, 8638-8641.]). The drug–drug co-crystal of GTB with furosemide has also been published (Thorat et al., 2015[Thorat, S. H., Sahu, S. K., Patwadkar, M. V., Badiger, M. V. & Gonnade, R. G. (2015). J. Pharm. Sci. 104, 4207-4216.]). Some of the major side effects of GTB include rash, acne and dry skin. To overcome these after effects, there is a need for combination drug therapy. In this regard, we chose azelaic acid (AA), which is used for treating mild to moderate acne, both comedonal acne and inflammatory acne (Fitton & Goa, 1991[Fitton, A. & Goa, K. L. (1991). Drugs, 41, 780-798.]). Furthermore, GTB is also known to form co-crystals with aliphatic di­carb­oxy­lic acids through N—H⋯O and O—H⋯N hydrogen bonds (Gonnade, 2015[Gonnade, R. G. (2015). PCT Int. Appl. WO 2015/170345 A1.]). AA is an aliphatic di­carb­oxy­lic acid (heptane-di­carb­oxy­lic acid), having seven CH2 groups in the alkyl chain. Two polymorphs of AA have been reported earlier, the α form is monoclinic, P21/c (Caspari, 1928[Caspari, W. A. (1928). J. Chem. Soc. pp. 3235-3241.]; Housty & Hospital, 1967[Housty, J. & Hospital, M. (1967). Acta Cryst. 22, 288-295.]) and the β form crystallizes in the monoclinic C2/c space group (Housty & Hospital, 1967[Housty, J. & Hospital, M. (1967). Acta Cryst. 22, 288-295.]). Both GTB and AA are non-volatile solids at room temperature and their respective melting points are in the ranges 192–195 K and 378–381 K.

[Scheme 1]

2. Structural commentary

The title compound GTB–AA (1:1) crystallizes in the monoclinic P21/n centrosymmetric space group containing one mol­ecule of each in the asymmetric unit (Fig. 1[link], Table 1[link]) (CCDC reference No. 2002536). The halophenyl ring of GTB and the alkyl (–CH2–) chain of AA exhibit positional disorder over two conformations, due to the free rotation around the N—C and C—C single bonds, respectively (Fig. 2[link]a and 2b). A structure overlay of the GTB mol­ecule based on a fit of the quinazoline groups in the co-crystal structure with that of its stable polymorph [the crystal structure of the stable polymorph of GTB was retrieved from the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), refcode: FARRUM02; Thorat et al., 2014[Thorat, S. H., Patwadkar, M. V., Gonnade, R. G. & Vaidhyanathan, R. (2014). CrystEngComm, 16, 8638-8641.]] revealed a considerable difference in the orientation of the morpholine moiety [torsion angles, C19—C20—C21—N22 = 54.0 (2)° for GTB in the co-crystal while the corresponding torsion angle in the stable polymorph of GTB is 74.3 (2)°] because of the conformationally flexible –CH2– spacer (Fig. 3[link]). Whereas the conformation of the phenyl group showed a slight difference with a dihedral angle of 14.1 (2)° (the angular difference between the planes of halophenyl ring of both structures). The quinazoline, morpholine and phenyl moieties of GTB have acquired a roughly planar geometry in the co-crystal [torsion angle C12—C5—C19—N22 = 14.4 (2)°, only the N atom of morpholine is considered and not the full fragment], whereas in the stable polymorph of GTB, the morpholine moiety deviates significantly from the plane [the corresponding torsion angle is −75.7 (2)°]. The approximate planarity of the phenyl, quinazoline and morpholine (only N atom considered) moieties of GTB in the co-crystal seems to be due to the engagement of these groups with one of the acid groups of AA via N—H⋯O and O—H⋯N hydrogen bonds. The conformation of this acid group of AA shows a considerable departure from its usual linear chain structure due to an acquired bend at the 7th carbon atom (C39) [torsional difference 105.15 (19)° from the other end of the acid group, torsion angles, C32—C33—C34—C35 = −174.15 (19)° and C37—C38—C39—C40 = −69.0 (3)°]. The conformational bend could be due to the inclusion of the acid moiety in the pocket formed between the morpholine and phenyl moieties (which have a mol­ecular clip-like geometry) of GTB and the subsequent involvement of the carbonyl and hydroxyl groups of the included acid moiety in the formation of the N—H⋯O and O—H⋯N hydrogen bonds with the distantly located amine N—H and the N atom of the morpholine moiety, respectively (Fig. 4[link]). The other acid group of AA forms an O—H⋯N hydrogen bond with the N atom of the quinazoline moiety.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O42i 0.84 (2) 2.20 (2) 3.025 (2) 169.6 (18)
O41—H41⋯N22ii 1.01 1.78 2.6566 (19) 144
O30—H30⋯N1 0.99 (3) 1.65 (3) 2.6135 (19) 166 (2)
C5—H5⋯O42i 0.95 2.25 3.194 (2) 170
C2—H2⋯F1iii 0.95 2.15 3.07 (3) 163
C2—H2⋯F1′iii 0.95 2.32 3.253 (3) 166
C29—H29B⋯O18iv 0.98 2.65 3.6101 (19) 167
C23—H23B⋯O25v 0.99 2.57 3.220 (2) 123
C27—H27B⋯F1vi 0.99 2.71 3.68 (4) 166
C39—H39A⋯O30vii 0.99 2.50 3.255 (4) 133
C21—H21B⋯O31viii 0.99 2.29 3.234 (2) 160
C13—H13⋯O30ix 0.95 2.39 3.139 (3) 135
C13′—H13′⋯O30ix 0.95 2.53 3.268 (3) 135
Cg2⋯Cg2viii     3.5358 (11) 0 (1)
Cg2⋯Cg3viii     3.7909 (11) 1 (1)
Cg2⋯Cg3ix     3.7530 (11) 1 (1)
Cg3⋯Cg3viii     3.7934 (11) 0 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) -x+2, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x+1, y, z; (vii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) -x+1, -y+1, -z+1; (ix) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labelling, 50% probability displacement ellipsoids for non-H atoms and hydrogen bonding with a dotted magenta line. H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Crystal structures of GTB (a) and AA (b) in the co-crystal showing positional disorder of the halophenyl ring and alkyl chain, respectively.
[Figure 3]
Figure 3
Structure overlay of GTB mol­ecule in the co-crystal (magenta) and its stable polymorph (green).
[Figure 4]
Figure 4
The `mol­ecular clip'-like geometry of GTB that accommodates a carboxyl group of AA. The mol­ecules inter­act through N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds.

3. Supra­molecular features

The closely associated mol­ecules of GTB and AA (through an O30—H30⋯N1 hydrogen bond) constitute a `zero-dimensional' supra­molecular motif wherein a carboxyl OH of AA donates its H atom to the quinazoline N atom (Fig. 1[link]). Adjacent n-glide symmetry-related `zero-dimensional' motifs are linked firmly along the ac diagonal by strong N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds to generate a one-dimensional linear chain structure (Fig. 5[link], Table 1[link]). The cavity created by GTB as a result of its `mol­ecular clip'-like geometry encapsulates the other carb­oxy­lic acid group of AA. In the cavity, the carboxyl oxygen (O42) accepts the H atoms from amine N11—H11 and C5—H5 to form N11—H11⋯O42i and C5—H5⋯O42i hydrogen bonds (symmetry operations are given in the footnote to Table 1[link]). In turn, the carboxyl OH (O41—H41) of AA donates its H atom to the morpholine N22 to make a O41—H41⋯N22ii hydrogen bond. The neighbouring anti­parallel chains are stitched centrosymmetrically through C2—H2⋯F1iii contacts and C29—H29B⋯O18iv hydrogen bonds to form a two-dimensional layered assembly in the ac plane (Fig. 6[link]). A view of the mol­ecular packing down the b axis reveals the stacking of the 2D layers by aromatic ππ inter­actions between centrosymmetrically related quinazoline rings [inter­planar spacing, 3.396 (13) Å] (Cg2⋯Cg2vii, Cg2⋯Cg3vii, Cg2⋯Cg3viii and Cg3⋯Cg3vii; Cg2 is the centroid of the N1/C2/N3/C4/C10/C9 ring and Cg3 is the centroid of the C5–C10 ring, Table 1[link]). Mol­ecules between the two layers are also connected by C27—H27B⋯F1vi contacts and C23—H23B⋯O25v, C21—H21B⋯O31vii, C13—H13⋯O30viii and C39—H39A⋯O30ix hydrogen bonds to generate the three-dimensional packing (Fig. 7[link], Table 1[link]).

[Figure 5]
Figure 5
A one-dimensional chain formed by GTB and AA mol­ecules along the ac diagonal via O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.
[Figure 6]
Figure 6
Two-dimensional layered assembly of GTB and AA along the ac diagonal. The neighbouring one-dimensional chains are stitched through C—H⋯F and C—H⋯O hydrogen bonds.
[Figure 7]
Figure 7
The view of the mol­ecular packing along the b axis showing the association of GTB mol­ecules through aromatic ππ inter­actions along with C—H⋯F and C—H⋯O inter­actions.

4. Database survey

A search for the title co-crystal in the Cambridge Structural Database (CSD, Version 5.41, the update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found no hits. However, searches for GTB and AA gave 8 and 35 hits, respectively. A search for the GTB mol­ecule showed that the amine N—H moiety is involved in N—H⋯O hydrogen-bond formation either with the morpholine oxygen in both of its polymorphs (Thorat et al., 2014[Thorat, S. H., Patwadkar, M. V., Gonnade, R. G. & Vaidhyanathan, R. (2014). CrystEngComm, 16, 8638-8641.]) or with the water oxygen (Gilday et al., 2005[Gilday, J. P., Graham, A. S., Ymen, B. I. & Bohlin, M. (2005). US Patent US 2005/0209229 A1.]; Thorat et al., 2015[Thorat, S. H., Sahu, S. K., Patwadkar, M. V., Badiger, M. V. & Gonnade, R. G. (2015). J. Pharm. Sci. 104, 4207-4216.]). For the AA search, 17 hits were found only for its two polymorphs (refcodes: AZELAC01–AZELAC17) wherein the AA mol­ecules are found to be associated by the conventional dimeric O—H⋯O hydrogen bonds (Caspari, 1928[Caspari, W. A. (1928). J. Chem. Soc. pp. 3235-3241.]; Housty & Hospital, 1967[Housty, J. & Hospital, M. (1967). Acta Cryst. 22, 288-295.]). The remaining hits were for either co-crystals with amides (Tothadi & Phadkule, 2019[Tothadi, S. & Phadkule, A. (2019). CrystEngComm, 21, 2481-2484.]; Thompson et al., 2011[Thompson, L. J., Voguri, R. S., Male, L. & Tremayne, M. (2011). CrystEngComm, 13, 4188-4195.]; Karki et al., 2009[Karki, S., Friščić, T. & Jones, W. (2009). CrystEngComm, 11, 470-481.]), pyridines (Braga et al., 2010[Braga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti, M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12, 3534-3536.]; Martins et al., 2016[Martins, I. C. B., Sardo, M., Santos, S. M., Fernandes, A., Antunes, A., André, V., Mafra, L. & Duarte, M. T. (2016). Cryst. Growth Des. 16, 154-166.]; Krueger et al., 2017[Krueger, E. L., Sinha, A. S., Desper, J. & Aakeröy, C. B. (2017). CrystEngComm, 19, 4605-4614.]) or complexes with Ni (Zhao et al., 2012[Zhao, F.-H., Che, Y.-X. & Zheng, J.-M. (2012). Cryst. Growth Des. 12, 4712-4715.]), Fe (Braga et al., 2006[Braga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877-3879.]) or Ba (Grzesiak et al., 2012[Grzesiak, M., Nitek, W., Rafalska-Łasocha, A. & Łasocha, W. (2012). Z. Kristallogr. 227, 629-634.]).

5. Synthesis and crystallization

Co-crystallization was carried out using equimolar amounts of commercial samples of GTB and AA by grinding combined with a slow evaporation method. The grinding experiment was performed manually using a mortar and pestle. The 1:1 stoichiometric molar ratio of GTB (45 mg, 0.1 mmol) and AA (19 mg, 0.1 mmol) was ground for about 15 minutes using dry (neat) grinding. The ground sample was dissolved in n-butanol and heated for ∼10 minutes to ensure the complete dissolution of the sample. The solution was filtered into the crystallization flask to remove the impurity and undissolved compound, and the solution was allowed to evaporate at room temperature (298–300 K). Elongated needle-shaped colourless crystals were obtained after 1–2 h. The melting point of the obtained co-crystal was 398–399 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms (except for hy­droxy and amine H atoms) were placed in geometrically idealized positions, with C—H = 0.95 Å for phenyl H atoms, C—H = 0.99 Å for methyl­ene H atoms and C—H = 0.98 Å for methyl H atoms. They were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for phenyl and methyl­ene, and 1.5Ueq(C) for methyl groups. The O- (O30) and N-bound H atoms were located in difference-Fourier maps and refined isotropically. However, the O-bound H atom was placed in a geometrically idealized positions using HFIX 148 as the O—H distance was longer when refined with its located position in the difference-Fourier map. It was constrained to ride on its parent atom (O41), with Uiso(H) = 1.5Ueq(O). The long O—H distance could be due to its involvement in the strong O—H⋯N hydrogen-bond formation with N22. The difference FoFc map shows that the H atom could be residing part of the time on O41 and part of the time on N22.

Table 2
Experimental details

Crystal data
Chemical formula C22H24ClFN4O3·C9H16O4
Mr 635.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.7716 (10), 7.4153 (13), 38.175 (7)
β (°) 92.311 (5)
V3) 3046.7 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.28 × 0.19 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.950, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 92337, 7338, 5413
Rint 0.162
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.02
No. of reflections 7338
No. of parameters 473
No. of restraints 126
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.32
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury 2020.1 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012), Mercury 2020.1 (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020), publCIF (Westrip, 2010).

Quinazolin-4-amine–nonanedioic acid (1/1) top
Crystal data top
C22H24ClFN4O3·C9H16O4F(000) = 1344
Mr = 635.12Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.7716 (10) ÅCell parameters from 9964 reflections
b = 7.4153 (13) Åθ = 2.5–36.4°
c = 38.175 (7) ŵ = 0.19 mm1
β = 92.311 (5)°T = 100 K
V = 3046.7 (8) Å3Thin Needle, colourless
Z = 40.28 × 0.19 × 0.04 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
diffractometer
7338 independent reflections
Radiation source: micro-focus sealed tube, Incoatech IµS HB5413 reflections with I > 2σ(I)
Multilayer mirrors monochromatorRint = 0.162
Detector resolution: 7.39 pixels mm-1θmax = 28.0°, θmin = 2.4°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.950, Tmax = 0.993l = 5050
92337 measured reflections
Refinement top
Refinement on F2126 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2854P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7338 reflectionsΔρmax = 0.37 e Å3
473 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.47579 (12)0.8204 (2)0.55135 (4)0.0133 (3)
C20.36066 (14)0.8699 (2)0.54311 (5)0.0148 (4)
H20.31360.91290.56190.018*
N30.30169 (12)0.8670 (2)0.51143 (4)0.0144 (3)
C40.36644 (14)0.8072 (2)0.48478 (4)0.0113 (3)
C50.56600 (14)0.6768 (2)0.46286 (4)0.0111 (3)
H50.53180.66710.43960.013*
C60.68614 (14)0.6245 (2)0.47037 (4)0.0109 (3)
C70.73862 (13)0.6397 (2)0.50508 (4)0.0116 (3)
C80.66847 (14)0.7041 (2)0.53159 (4)0.0117 (3)
H80.70330.71290.55480.014*
C90.54411 (14)0.7573 (2)0.52418 (4)0.0115 (3)
C100.49287 (14)0.7456 (2)0.48986 (4)0.0108 (3)
N110.31164 (12)0.8064 (2)0.45205 (4)0.0129 (3)
H110.3547 (17)0.784 (3)0.4348 (5)0.018 (5)*
C120.1907 (2)0.8603 (3)0.44138 (7)0.0084 (5)0.915 (7)
C130.1724 (2)0.9202 (3)0.40659 (7)0.0103 (5)0.915 (7)
H130.24090.92960.39180.012*0.915 (7)
C140.0538 (2)0.9655 (3)0.39399 (6)0.0126 (5)0.915 (7)
C150.0455 (2)0.9516 (5)0.41588 (7)0.0121 (6)0.915 (7)
C160.0294 (2)0.8968 (3)0.45021 (8)0.0114 (5)0.915 (7)
H160.09840.89060.46490.014*0.915 (7)
C170.0893 (2)0.8503 (3)0.46331 (6)0.0103 (5)0.915 (7)
H170.10140.81200.48700.012*0.915 (7)
Cl10.03309 (6)1.0446 (3)0.35140 (2)0.0239 (3)0.915 (7)
F10.1656 (19)0.981 (6)0.4079 (9)0.0207 (5)0.085 (7)
C12'0.165 (3)0.869 (4)0.4489 (8)0.0084 (5)0.085 (7)
C13'0.180 (3)0.904 (3)0.4171 (9)0.0103 (5)0.085 (7)
H13'0.26070.89970.40820.012*0.085 (7)
C14'0.088 (3)0.944 (3)0.3964 (9)0.0126 (5)0.085 (7)
C15'0.034 (2)0.956 (6)0.4083 (11)0.0121 (6)0.085 (7)
C16'0.038 (3)0.918 (4)0.4387 (10)0.0114 (5)0.085 (7)
H16'0.11670.93070.44890.014*0.085 (7)
C17'0.051 (3)0.863 (4)0.4588 (8)0.0103 (5)0.085 (7)
H17'0.03400.81580.48130.012*0.085 (7)
Cl1'0.0350 (8)0.977 (3)0.3483 (3)0.0239 (3)0.085 (7)
F1'0.15929 (17)0.9946 (5)0.40135 (6)0.0207 (5)0.915 (7)
O180.76536 (10)0.55753 (17)0.44664 (3)0.0146 (3)
C190.71844 (14)0.5374 (3)0.41114 (4)0.0140 (3)
H19A0.68400.65290.40210.017*
H19B0.65230.44470.40960.017*
C200.82895 (15)0.4798 (3)0.39031 (5)0.0167 (4)
H20A0.88510.58440.38790.020*
H20B0.87550.38520.40360.020*
C210.79365 (15)0.4080 (2)0.35412 (5)0.0162 (4)
H21A0.87080.38250.34180.019*
H21B0.74920.29230.35670.019*
N220.71453 (13)0.5303 (2)0.33193 (4)0.0170 (3)
C230.69993 (18)0.4460 (3)0.29657 (5)0.0252 (4)
H23A0.65680.32870.29850.030*
H23B0.78290.42310.28730.030*
C240.6265 (2)0.5668 (4)0.27160 (6)0.0392 (6)
H24A0.61950.50910.24820.047*
H24B0.54150.58270.28010.047*
O250.68388 (16)0.7383 (3)0.26857 (4)0.0467 (5)
C260.6932 (2)0.8207 (3)0.30238 (6)0.0426 (6)
H26A0.60880.83610.31130.051*
H26B0.73060.94190.30020.051*
C270.77011 (19)0.7117 (3)0.32823 (5)0.0261 (4)
H27A0.85580.70020.32010.031*
H27B0.77400.77340.35120.031*
O280.85921 (10)0.58683 (17)0.50862 (3)0.0148 (3)
C290.92077 (14)0.6098 (3)0.54230 (5)0.0162 (4)
H29A0.91790.73710.54910.024*
H29B1.00750.57120.54120.024*
H29C0.87900.53670.55970.024*
O300.58731 (10)0.86845 (18)0.61271 (3)0.0181 (3)
H300.533 (2)0.852 (4)0.5915 (7)0.056 (8)*
O310.41210 (11)0.90780 (19)0.64135 (4)0.0238 (3)
C320.52448 (15)0.9063 (2)0.64073 (5)0.0169 (4)
C330.60896 (16)0.9548 (3)0.67194 (5)0.0209 (4)
H33A0.61421.08790.67350.025*
H33B0.69340.90930.66760.025*
C340.57017 (16)0.8827 (3)0.70716 (5)0.0200 (4)
H34A0.57470.74940.70730.024*
H34B0.48340.91840.71120.024*
C350.6584 (3)0.9608 (5)0.73679 (8)0.0196 (6)0.770 (4)
H35A0.74490.92430.73240.023*0.770 (4)
H35B0.65461.09410.73600.023*0.770 (4)
C360.6250 (3)0.8968 (3)0.77317 (6)0.0178 (6)0.770 (4)
H36A0.62890.76340.77400.021*0.770 (4)
H36B0.53880.93350.77770.021*0.770 (4)
C370.7126 (2)0.9744 (4)0.80178 (8)0.0186 (6)0.770 (4)
H37A0.79890.94070.79670.022*0.770 (4)
H37B0.70701.10770.80110.022*0.770 (4)
C380.6847 (2)0.9101 (3)0.83854 (7)0.0174 (6)0.770 (4)
H38A0.69330.77720.83940.021*0.770 (4)
H38B0.59730.93970.84320.021*0.770 (4)
C390.7695 (3)0.9931 (5)0.86770 (8)0.0150 (7)0.770 (4)
H39A0.76881.12600.86530.018*0.770 (4)
H39B0.73660.96250.89080.018*0.770 (4)
C35'0.6128 (9)0.9559 (19)0.7400 (3)0.0196 (6)0.230 (4)
H35C0.60481.08880.73870.023*0.230 (4)
H35D0.70250.92810.74330.023*0.230 (4)
C36'0.5482 (8)0.8921 (13)0.7725 (2)0.023 (2)0.230 (4)
H36C0.55620.75940.77430.027*0.230 (4)
H36D0.45860.92090.76980.027*0.230 (4)
C37'0.6007 (7)0.9780 (13)0.8072 (2)0.023 (2)0.230 (4)
H37C0.59881.11090.80480.028*0.230 (4)
H37D0.54560.94530.82640.028*0.230 (4)
C38'0.7281 (8)0.9218 (12)0.8171 (3)0.0139 (19)0.230 (4)
H38C0.78500.97480.80020.017*0.230 (4)
H38D0.73330.78900.81490.017*0.230 (4)
C39'0.7737 (12)0.9740 (19)0.8538 (3)0.019 (2)0.230 (4)
H39C0.76571.10650.85590.023*0.230 (4)
H39D0.71610.91990.87050.023*0.230 (4)
C400.90344 (15)0.9248 (2)0.86617 (5)0.0153 (4)
O410.97487 (11)1.00506 (19)0.84437 (3)0.0235 (3)
H411.060 (2)0.950 (2)0.8463 (4)0.035*
O420.93796 (11)0.80413 (19)0.88602 (3)0.0224 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0133 (6)0.0141 (7)0.0125 (7)0.0010 (6)0.0024 (5)0.0003 (6)
C20.0139 (7)0.0173 (9)0.0133 (8)0.0029 (7)0.0036 (6)0.0007 (7)
N30.0127 (6)0.0165 (8)0.0140 (7)0.0020 (6)0.0015 (5)0.0003 (6)
C40.0119 (7)0.0092 (8)0.0128 (8)0.0007 (6)0.0005 (6)0.0004 (7)
C50.0106 (7)0.0123 (8)0.0101 (8)0.0005 (6)0.0005 (6)0.0001 (7)
C60.0109 (7)0.0106 (8)0.0114 (8)0.0002 (6)0.0027 (6)0.0000 (7)
C70.0088 (7)0.0100 (8)0.0160 (9)0.0006 (6)0.0011 (6)0.0015 (7)
C80.0126 (7)0.0116 (8)0.0107 (8)0.0007 (6)0.0023 (6)0.0007 (7)
C90.0127 (7)0.0090 (8)0.0129 (8)0.0001 (6)0.0020 (6)0.0001 (7)
C100.0112 (7)0.0078 (8)0.0135 (8)0.0005 (6)0.0012 (6)0.0011 (6)
N110.0076 (6)0.0195 (8)0.0118 (7)0.0034 (6)0.0017 (5)0.0015 (6)
C120.0041 (10)0.0098 (8)0.0114 (13)0.0021 (7)0.0028 (7)0.0018 (8)
C130.0085 (8)0.0165 (10)0.0059 (12)0.0021 (7)0.0002 (9)0.0017 (8)
C140.0071 (11)0.0177 (10)0.0127 (9)0.0050 (8)0.0034 (9)0.0015 (8)
C150.0086 (8)0.0157 (9)0.0120 (17)0.0024 (7)0.0011 (7)0.0018 (11)
C160.0083 (8)0.0165 (10)0.0093 (12)0.0008 (7)0.0016 (9)0.0005 (9)
C170.0035 (10)0.0140 (9)0.0132 (9)0.0011 (8)0.0014 (8)0.0002 (7)
Cl10.01550 (19)0.0375 (8)0.0185 (3)0.0082 (3)0.00091 (18)0.0091 (4)
F10.0077 (5)0.0352 (9)0.0190 (13)0.0063 (5)0.0013 (6)0.0007 (9)
C12'0.0041 (10)0.0098 (8)0.0114 (13)0.0021 (7)0.0028 (7)0.0018 (8)
C13'0.0085 (8)0.0165 (10)0.0059 (12)0.0021 (7)0.0002 (9)0.0017 (8)
C14'0.0071 (11)0.0177 (10)0.0127 (9)0.0050 (8)0.0034 (9)0.0015 (8)
C15'0.0086 (8)0.0157 (9)0.0120 (17)0.0024 (7)0.0011 (7)0.0018 (11)
C16'0.0083 (8)0.0165 (10)0.0093 (12)0.0008 (7)0.0016 (9)0.0005 (9)
C17'0.0035 (10)0.0140 (9)0.0132 (9)0.0011 (8)0.0014 (8)0.0002 (7)
Cl1'0.01550 (19)0.0375 (8)0.0185 (3)0.0082 (3)0.00091 (18)0.0091 (4)
F1'0.0077 (5)0.0352 (9)0.0190 (13)0.0063 (5)0.0013 (6)0.0007 (9)
O180.0105 (5)0.0228 (7)0.0106 (6)0.0042 (5)0.0001 (4)0.0030 (5)
C190.0114 (7)0.0206 (9)0.0098 (8)0.0009 (7)0.0015 (6)0.0007 (7)
C200.0121 (7)0.0224 (10)0.0156 (9)0.0028 (7)0.0009 (6)0.0040 (8)
C210.0169 (8)0.0157 (9)0.0160 (9)0.0040 (7)0.0016 (7)0.0010 (7)
N220.0211 (7)0.0188 (8)0.0113 (7)0.0053 (6)0.0028 (6)0.0004 (6)
C230.0275 (9)0.0347 (12)0.0133 (9)0.0098 (9)0.0015 (7)0.0053 (9)
C240.0400 (12)0.0615 (17)0.0161 (10)0.0193 (12)0.0034 (9)0.0049 (11)
O250.0590 (10)0.0591 (12)0.0235 (9)0.0253 (9)0.0179 (7)0.0200 (8)
C260.0637 (15)0.0314 (13)0.0347 (14)0.0212 (12)0.0252 (12)0.0158 (11)
C270.0396 (11)0.0170 (10)0.0228 (11)0.0020 (8)0.0143 (9)0.0010 (8)
O280.0096 (5)0.0212 (7)0.0135 (6)0.0038 (5)0.0025 (4)0.0022 (5)
C290.0123 (7)0.0214 (10)0.0145 (9)0.0028 (7)0.0052 (6)0.0036 (7)
O300.0150 (5)0.0276 (7)0.0116 (6)0.0001 (5)0.0004 (5)0.0023 (6)
O310.0141 (6)0.0344 (8)0.0232 (7)0.0014 (5)0.0020 (5)0.0030 (6)
C320.0174 (8)0.0181 (9)0.0153 (9)0.0011 (7)0.0011 (7)0.0000 (7)
C330.0192 (8)0.0276 (11)0.0159 (9)0.0043 (8)0.0005 (7)0.0023 (8)
C340.0254 (9)0.0197 (10)0.0148 (9)0.0011 (8)0.0001 (7)0.0006 (8)
C350.0201 (15)0.0227 (11)0.0159 (12)0.0061 (15)0.0000 (13)0.0001 (9)
C360.0162 (13)0.0209 (13)0.0161 (12)0.0027 (10)0.0023 (10)0.0003 (10)
C370.0196 (12)0.0229 (15)0.0133 (14)0.0058 (11)0.0012 (11)0.0028 (12)
C380.0125 (10)0.0247 (14)0.0149 (14)0.0037 (9)0.0005 (10)0.0013 (10)
C390.0134 (11)0.0207 (15)0.0111 (16)0.0003 (10)0.0009 (14)0.0017 (15)
C35'0.0201 (15)0.0227 (11)0.0159 (12)0.0061 (15)0.0000 (13)0.0001 (9)
C36'0.014 (5)0.035 (5)0.019 (4)0.002 (4)0.001 (3)0.003 (4)
C37'0.015 (4)0.033 (5)0.021 (5)0.000 (3)0.002 (3)0.006 (4)
C38'0.017 (4)0.013 (4)0.011 (5)0.002 (3)0.004 (4)0.001 (4)
C39'0.023 (4)0.021 (5)0.014 (6)0.003 (3)0.010 (5)0.005 (5)
C400.0153 (7)0.0154 (9)0.0148 (9)0.0042 (7)0.0028 (7)0.0027 (7)
O410.0185 (6)0.0302 (8)0.0215 (7)0.0046 (6)0.0012 (5)0.0094 (6)
O420.0171 (6)0.0288 (8)0.0209 (7)0.0047 (5)0.0044 (5)0.0085 (6)
Geometric parameters (Å, º) top
N1—C21.319 (2)C24—O251.421 (3)
N1—C91.378 (2)C24—H24A0.9900
C2—N31.343 (2)C24—H24B0.9900
C2—H20.9500O25—C261.428 (3)
N3—C41.333 (2)C26—C271.499 (3)
C4—N111.360 (2)C26—H26A0.9900
C4—C101.442 (2)C26—H26B0.9900
C5—C61.370 (2)C27—H27A0.9900
C5—C101.417 (2)C27—H27B0.9900
C5—H50.9500O28—C291.433 (2)
C6—O181.3631 (19)C29—H29A0.9800
C6—C71.424 (2)C29—H29B0.9800
C7—O281.3585 (18)C29—H29C0.9800
C7—C81.373 (2)O30—C321.319 (2)
C8—C91.414 (2)O30—H300.99 (3)
C8—H80.9500O31—C321.212 (2)
C9—C101.404 (2)C32—C331.513 (2)
N11—C121.408 (2)C33—C341.521 (3)
N11—C12'1.64 (3)C33—H33A0.9900
N11—H110.84 (2)C33—H33B0.9900
C12—C171.404 (3)C34—C35'1.426 (12)
C12—C131.407 (3)C34—C351.559 (4)
C13—C141.389 (3)C34—H34A0.9900
C13—H130.9500C34—H34B0.9900
C14—C151.387 (3)C35—C361.525 (4)
C14—Cl11.734 (3)C35—H35A0.9900
C15—F11.335 (19)C35—H35B0.9900
C15—C161.377 (3)C36—C371.527 (4)
C16—C171.397 (3)C36—H36A0.9900
C16—H160.9500C36—H36B0.9900
C17—H170.9500C37—C381.524 (4)
C12'—C13'1.26 (4)C37—H37A0.9900
C12'—C17'1.31 (3)C37—H37B0.9900
C13'—C14'1.27 (4)C38—C391.540 (4)
C13'—H13'0.9500C38—H38A0.9900
C14'—C15'1.41 (4)C38—H38B0.9900
C14'—Cl1'1.92 (3)C39—C401.533 (4)
C15'—C16'1.20 (4)C39—H39A0.9900
C15'—F1'1.395 (19)C39—H39B0.9900
C16'—C17'1.27 (4)C35'—C36'1.522 (14)
C16'—H16'0.9500C35'—H35C0.9900
C17'—H17'0.9500C35'—H35D0.9900
O18—C191.435 (2)C36'—C37'1.556 (12)
C19—C201.519 (2)C36'—H36C0.9900
C19—H19A0.9900C36'—H36D0.9900
C19—H19B0.9900C37'—C38'1.469 (11)
C20—C211.515 (2)C37'—H37C0.9900
C20—H20A0.9900C37'—H37D0.9900
C20—H20B0.9900C38'—C39'1.516 (15)
C21—N221.486 (2)C38'—H38C0.9900
C21—H21A0.9900C38'—H38D0.9900
C21—H21B0.9900C39'—C401.501 (13)
N22—C271.482 (2)C39'—H39C0.9900
N22—C231.490 (2)C39'—H39D0.9900
C23—C241.509 (3)C40—O421.221 (2)
C23—H23A0.9900C40—O411.300 (2)
C23—H23B0.9900O41—H411.01 (2)
C2—N1—C9116.13 (14)O25—C26—C27112.41 (18)
N1—C2—N3128.05 (15)O25—C26—H26A109.1
N1—C2—H2116.0C27—C26—H26A109.1
N3—C2—H2116.0O25—C26—H26B109.1
C4—N3—C2116.72 (14)C27—C26—H26B109.1
N3—C4—N11118.80 (14)H26A—C26—H26B107.9
N3—C4—C10121.53 (15)N22—C27—C26109.72 (18)
N11—C4—C10119.66 (14)N22—C27—H27A109.7
C6—C5—C10119.83 (15)C26—C27—H27A109.7
C6—C5—H5120.1N22—C27—H27B109.7
C10—C5—H5120.1C26—C27—H27B109.7
O18—C6—C5125.13 (15)H27A—C27—H27B108.2
O18—C6—C7114.31 (13)C7—O28—C29117.44 (13)
C5—C6—C7120.56 (14)O28—C29—H29A109.5
O28—C7—C8125.43 (15)O28—C29—H29B109.5
O28—C7—C6114.31 (14)H29A—C29—H29B109.5
C8—C7—C6120.26 (14)O28—C29—H29C109.5
C7—C8—C9119.64 (15)H29A—C29—H29C109.5
C7—C8—H8120.2H29B—C29—H29C109.5
C9—C8—H8120.2C32—O30—H30112.8 (15)
N1—C9—C10121.46 (14)O31—C32—O30124.29 (17)
N1—C9—C8118.33 (15)O31—C32—C33123.51 (16)
C10—C9—C8120.21 (14)O30—C32—C33112.16 (14)
C9—C10—C5119.48 (14)C32—C33—C34115.76 (15)
C9—C10—C4116.09 (14)C32—C33—H33A108.3
C5—C10—C4124.43 (15)C34—C33—H33A108.3
C4—N11—C12128.84 (17)C32—C33—H33B108.3
C4—N11—C12'116.5 (11)C34—C33—H33B108.3
C4—N11—H11119.4 (13)H33A—C33—H33B107.4
C12—N11—H11111.4 (13)C35'—C34—C33123.6 (5)
C12'—N11—H11123.9 (17)C33—C34—C35109.25 (18)
C17—C12—C13119.82 (19)C33—C34—H34A109.8
C17—C12—N11123.1 (3)C35—C34—H34A109.8
C13—C12—N11117.1 (2)C33—C34—H34B109.8
C14—C13—C12119.7 (2)C35—C34—H34B109.8
C14—C13—H13120.2H34A—C34—H34B108.3
C12—C13—H13120.2C36—C35—C34112.7 (2)
C15—C14—C13119.6 (2)C36—C35—H35A109.1
C15—C14—Cl1121.1 (2)C34—C35—H35A109.1
C13—C14—Cl1119.2 (2)C36—C35—H35B109.1
F1—C15—C16110.4 (15)C34—C35—H35B109.1
F1—C15—C14127.9 (16)H35A—C35—H35B107.8
C16—C15—C14121.6 (2)C35—C36—C37111.9 (2)
C15—C16—C17119.50 (19)C35—C36—H36A109.2
C15—C16—H16120.3C37—C36—H36A109.2
C17—C16—H16120.3C35—C36—H36B109.2
C16—C17—C12119.7 (2)C37—C36—H36B109.2
C16—C17—H17120.1H36A—C36—H36B107.9
C12—C17—H17120.1C38—C37—C36113.7 (2)
C13'—C12'—C17'116 (3)C38—C37—H37A108.8
C13'—C12'—N1189 (2)C36—C37—H37A108.8
C17'—C12'—N11152 (3)C38—C37—H37B108.8
C12'—C13'—C14'122 (3)C36—C37—H37B108.8
C12'—C13'—H13'119.2H37A—C37—H37B107.7
C14'—C13'—H13'119.2C37—C38—C39114.0 (2)
C13'—C14'—C15'122 (3)C37—C38—H38A108.7
C13'—C14'—Cl1'145 (3)C39—C38—H38A108.7
C15'—C14'—Cl1'93 (2)C37—C38—H38B108.7
C16'—C15'—F1'99 (3)C39—C38—H38B108.7
C16'—C15'—C14'112 (3)H38A—C38—H38B107.6
F1'—C15'—C14'149 (4)C40—C39—C38111.9 (2)
C15'—C16'—C17'127 (3)C40—C39—H39A109.2
C15'—C16'—H16'116.4C38—C39—H39A109.2
C17'—C16'—H16'116.4C40—C39—H39B109.2
C16'—C17'—C12'121 (3)C38—C39—H39B109.2
C16'—C17'—H17'119.7H39A—C39—H39B107.9
C12'—C17'—H17'119.7C34—C35'—C36'117.2 (8)
C6—O18—C19117.35 (12)C34—C35'—H35C108.0
O18—C19—C20105.66 (12)C36'—C35'—H35C108.0
O18—C19—H19A110.6C34—C35'—H35D108.0
C20—C19—H19A110.6C36'—C35'—H35D108.0
O18—C19—H19B110.6H35C—C35'—H35D107.2
C20—C19—H19B110.6C35'—C36'—C37'113.9 (8)
H19A—C19—H19B108.7C35'—C36'—H36C108.8
C21—C20—C19113.76 (13)C37'—C36'—H36C108.8
C21—C20—H20A108.8C35'—C36'—H36D108.8
C19—C20—H20A108.8C37'—C36'—H36D108.8
C21—C20—H20B108.8H36C—C36'—H36D107.7
C19—C20—H20B108.8C38'—C37'—C36'114.0 (7)
H20A—C20—H20B107.7C38'—C37'—H37C108.8
N22—C21—C20115.03 (15)C36'—C37'—H37C108.8
N22—C21—H21A108.5C38'—C37'—H37D108.8
C20—C21—H21A108.5C36'—C37'—H37D108.8
N22—C21—H21B108.5H37C—C37'—H37D107.6
C20—C21—H21B108.5C37'—C38'—C39'115.5 (8)
H21A—C21—H21B107.5C37'—C38'—H38C108.4
C27—N22—C21112.56 (14)C39'—C38'—H38C108.4
C27—N22—C23108.83 (15)C37'—C38'—H38D108.4
C21—N22—C23107.32 (14)C39'—C38'—H38D108.4
N22—C23—C24110.88 (17)H38C—C38'—H38D107.5
N22—C23—H23A109.5C40—C39'—C38'119.4 (8)
C24—C23—H23A109.5C40—C39'—H39C107.5
N22—C23—H23B109.5C38'—C39'—H39C107.5
C24—C23—H23B109.5C40—C39'—H39D107.5
H23A—C23—H23B108.1C38'—C39'—H39D107.5
O25—C24—C23111.37 (19)H39C—C39'—H39D107.0
O25—C24—H24A109.4O42—C40—O41124.03 (16)
C23—C24—H24A109.4O42—C40—C39'129.0 (6)
O25—C24—H24B109.4O41—C40—C39'104.8 (5)
C23—C24—H24B109.4O42—C40—C39118.8 (2)
H24A—C24—H24B108.0O41—C40—C39117.10 (19)
C24—O25—C26108.91 (17)C40—O41—H41109.5
C9—N1—C2—N30.2 (3)N11—C12'—C13'—C14'171.7 (16)
N1—C2—N3—C40.1 (3)C12'—C13'—C14'—C15'1 (2)
C2—N3—C4—N11178.27 (15)C12'—C13'—C14'—Cl1'168 (3)
C2—N3—C4—C101.1 (2)C13'—C14'—C15'—C16'2 (5)
C10—C5—C6—O18179.65 (15)Cl1'—C14'—C15'—C16'171 (4)
C10—C5—C6—C70.4 (2)C13'—C14'—C15'—F1'177 (6)
O18—C6—C7—O280.7 (2)Cl1'—C14'—C15'—F1'10 (7)
C5—C6—C7—O28178.59 (15)F1'—C15'—C16'—C17'177 (3)
O18—C6—C7—C8179.53 (15)C14'—C15'—C16'—C17'4 (6)
C5—C6—C7—C81.2 (3)C15'—C16'—C17'—C12'11 (6)
O28—C7—C8—C9179.02 (15)C13'—C12'—C17'—C16'11 (4)
C6—C7—C8—C90.7 (2)N11—C12'—C17'—C16'161 (4)
C2—N1—C9—C100.5 (2)C5—C6—O18—C191.1 (2)
C2—N1—C9—C8179.41 (16)C7—C6—O18—C19179.61 (14)
C7—C8—C9—N1179.62 (15)C6—O18—C19—C20174.33 (14)
C7—C8—C9—C100.5 (2)O18—C19—C20—C21166.04 (15)
N1—C9—C10—C5178.89 (15)C19—C20—C21—N2254.0 (2)
C8—C9—C10—C51.2 (2)C20—C21—N22—C2754.86 (19)
N1—C9—C10—C41.4 (2)C20—C21—N22—C23174.57 (15)
C8—C9—C10—C4178.49 (15)C27—N22—C23—C2454.7 (2)
C6—C5—C10—C90.7 (2)C21—N22—C23—C24176.76 (17)
C6—C5—C10—C4178.92 (16)N22—C23—C24—O2557.9 (2)
N3—C4—C10—C91.7 (2)C23—C24—O25—C2659.2 (2)
N11—C4—C10—C9177.61 (15)C24—O25—C26—C2760.6 (2)
N3—C4—C10—C5178.60 (16)C21—N22—C27—C26173.58 (15)
N11—C4—C10—C52.1 (3)C23—N22—C27—C2654.74 (19)
N3—C4—N11—C120.6 (3)O25—C26—C27—N2259.3 (2)
C10—C4—N11—C12179.94 (18)C8—C7—O28—C293.9 (2)
N3—C4—N11—C12'3.5 (12)C6—C7—O28—C29175.88 (15)
C10—C4—N11—C12'177.1 (11)O31—C32—C33—C3441.3 (3)
C4—N11—C12—C1729.1 (3)O30—C32—C33—C34140.79 (17)
C4—N11—C12—C13153.23 (19)C32—C33—C34—C35'160.0 (6)
C17—C12—C13—C141.3 (3)C32—C33—C34—C35174.15 (19)
N11—C12—C13—C14176.4 (2)C33—C34—C35—C36179.3 (2)
C12—C13—C14—C150.1 (3)C34—C35—C36—C37179.9 (2)
C12—C13—C14—Cl1178.38 (17)C35—C36—C37—C38178.5 (2)
C13—C14—C15—F1177 (2)C36—C37—C38—C39177.9 (2)
Cl1—C14—C15—F15 (2)C37—C38—C39—C4069.0 (3)
C13—C14—C15—C161.2 (4)C33—C34—C35'—C36'169.2 (6)
Cl1—C14—C15—C16177.0 (2)C34—C35'—C36'—C37'179.8 (8)
F1—C15—C16—C17176.9 (19)C35'—C36'—C37'—C38'67.5 (11)
C14—C15—C16—C171.3 (4)C36'—C37'—C38'—C39'169.1 (9)
C15—C16—C17—C120.1 (4)C37'—C38'—C39'—C40179.1 (9)
C13—C12—C17—C161.2 (3)C38'—C39'—C40—O42103.4 (10)
N11—C12—C17—C16176.4 (2)C38'—C39'—C40—O4160.0 (11)
C4—N11—C12'—C13'158.5 (10)C38—C39—C40—O4299.5 (3)
C4—N11—C12'—C17'49 (5)C38—C39—C40—O4183.0 (3)
C17'—C12'—C13'—C14'5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O42i0.84 (2)2.20 (2)3.025 (2)169.6 (18)
O41—H41···N22ii1.011.782.6566 (19)144
O30—H30···N10.99 (3)1.65 (3)2.6135 (19)166 (2)
C5—H5···O42i0.952.253.194 (2)170
C2—H2···F1iii0.952.153.07 (3)163
C2—H2···F1iii0.952.323.253 (3)166
C29—H29B···O18iv0.982.653.6101 (19)167
C23—H23B···O25v0.992.573.220 (2)123
C27—H27B···F1vi0.992.713.68 (4)166
C39—H39A···O30vii0.992.503.255 (4)133
C21—H21B···O31viii0.992.293.234 (2)160
C13—H13···O30ix0.952.393.139 (3)135
C13—H13···O30ix0.952.533.268 (3)135
Cg2···Cg2viii3.5358 (11)0 (1)
Cg2···Cg3viii3.7909 (11)1 (1)
Cg2···Cg3ix3.7530 (11)1 (1)
Cg3···Cg3viii3.7934 (11)0 (1)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+3/2, y+1/2, z+3/2; (viii) x+1, y+1, z+1; (ix) x+1, y+2, z+1.
 

Acknowledgements

CPG thanks SERB, New Delhi, for a project fellowship. This work was funded by the Science and Engineering Research Board (SERB), New Delhi (grant No. EEQ/2018/001172).

Funding information

Funding for this research was provided by: Science and Engineering Research Board (SERB), New Delhi (grant No. EEQ/2018/001172 to Dr. Rajesh G. Gonnade).

References

First citationBraga, D., Dichiarante, E., Palladino, G., Grepioni, F., Chierotti, M. R., Gobetto, R. & Pellegrino, L. (2010). CrystEngComm, 12, 3534–3536.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877–3879.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaspari, W. A. (1928). J. Chem. Soc. pp. 3235–3241.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitton, A. & Goa, K. L. (1991). Drugs, 41, 780–798.  CrossRef PubMed CAS Google Scholar
First citationGilday, J. P., Graham, A. S., Ymen, B. I. & Bohlin, M. (2005). US Patent US 2005/0209229 A1.  Google Scholar
First citationGonnade, R. G. (2015). PCT Int. Appl. WO 2015/170345 A1.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrzesiak, M., Nitek, W., Rafalska-Łasocha, A. & Łasocha, W. (2012). Z. Kristallogr. 227, 629–634.  CrossRef CAS Google Scholar
First citationHousty, J. & Hospital, M. (1967). Acta Cryst. 22, 288–295.  CSD CAS Web of Science Google Scholar
First citationKarki, S., Friščić, T. & Jones, W. (2009). CrystEngComm, 11, 470–481.  Web of Science CSD CrossRef CAS Google Scholar
First citationKobayashi, K. & Hagiwara, K. (2013). Targ Oncol, 8, 27–33.  CrossRef Google Scholar
First citationKrueger, E. L., Sinha, A. S., Desper, J. & Aakeröy, C. B. (2017). CrystEngComm, 19, 4605–4614.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartins, I. C. B., Sardo, M., Santos, S. M., Fernandes, A., Antunes, A., André, V., Mafra, L. & Duarte, M. T. (2016). Cryst. Growth Des. 16, 154–166.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, L. J., Voguri, R. S., Male, L. & Tremayne, M. (2011). CrystEngComm, 13, 4188–4195.  Web of Science CSD CrossRef CAS Google Scholar
First citationThorat, S. H., Patwadkar, M. V., Gonnade, R. G. & Vaidhyanathan, R. (2014). CrystEngComm, 16, 8638–8641.  Web of Science CSD CrossRef CAS Google Scholar
First citationThorat, S. H., Sahu, S. K., Patwadkar, M. V., Badiger, M. V. & Gonnade, R. G. (2015). J. Pharm. Sci. 104, 4207–4216.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTothadi, S. & Phadkule, A. (2019). CrystEngComm, 21, 2481–2484.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, F.-H., Che, Y.-X. & Zheng, J.-M. (2012). Cryst. Growth Des. 12, 4712–4715.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds