metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1202-m1203

Tri­carbonyl[tris­(1-methyl-1H-imidazol-2-yl-κN3)methanol]manganese(I) tri­fluoro­methane­sulfonate

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, and bInstitut für Pharmazeutische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: peter.kunz@uni-duesseldorf.de

(Received 28 June 2012; accepted 15 August 2012; online 23 August 2012)

In the title compound, [Mn(C13H16N6O)(CO)3](CF3O3S), the MnI atom has a slightly distorted octa­hedral geometry. The three CO ligands have C—Mn—C angles in the range 89.44 (10)–92.31 (9)°, while the three N atoms of the tripodal ligand form significantly smaller N—Mn—N angles of 82.76 (2)–85.51 (6)°. The three N atoms of the tripodal ligand and the three carbonyl ligands coordinate facially. In the crystal, the trifluoro­methane­sulfonate counter anion is connected by a medium-strength O—H⋯O hydrogen bond to the hydroxyl group of the manganese complex.

Related literature

For the structures of related complexes, see: Niesel et al. (2008[Niesel, J., Pinto, A., Peindy N'Dongo, H. W., Merz, K., Ott, I., Gust, R. & Schatzschneider, U. (2008). Chem. Commun. pp. 1798-1800.]); Herrick et al. (2008[Herrick, R. S., Ziegler, C., Jameson, D. & Aquina, C. (2008). Dalton Trans. pp. 3605-3609.]); Kunz et al. (2009[Kunz, P. C., Huber, W., Rojas, A., Schatzschneider, U. & Spingler, B. (2009). Eur. J. Inorg. Chem. pp. 5358-5366.]). For details of the chemistry of tris­(imidazolyl-2-yl)carbinol ligands, see: Stamatatos et al. (2009[Stamatatos, T. C., Efthymiou, C. G., Stoumpos, C. C. & Perlepes, S. P. (2009). Eur. J. Inorg. Chem. pp. 3361-3391.]); Breslow et al. (1983[Breslow, R., Hunt, J. T., Smiley, R. & Tarnowski, T. (1983). J. Am. Chem. Soc. 105, 5337-5342.]); Tang et al. (1978[Tang, C. C., Davalian, D., Huang, P. & Breslow, R. (1978). J. Am. Chem. Soc. 100, 3918-3922.]). For details of the chemistry of Mn(CO)3 complexes, see: Kreiter et al. (1994[Kreiter, C. G., Koch, E.-C., Frank, W. & Reiss, G. J. (1994). Inorg. Chim. Acta, 220, 77-83.], 1995[Kreiter, C. G., Fiedler, C., Frank, W. & Reiss, G. J. (1995). J. Organomet. Chem. 490, 133-141.]); Brückmann et al. (2011[Brückmann, N. E., Wahl, M., Reiss, G. J., Kohns, M., Wätjen, W. & Kunz, P. C. (2011). Eur. J. Inorg. Chem. pp. 4571-4577.]); Huber et al. (2012[Huber, W., Linder, R., Niesel, J., Schatzschneider, U., Spingler, B. & Kunz, P. C. (2012). Eur. J. Inorg. Chem. pp. 3140-3146.]); Berends & Kurz (2012[Berends, H.-M. & Kurz, P. (2012). Inorg. Chim. Acta, 380, 141-147.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(CO)3(C13H16N6O)](CF3O3S)

  • Mr = 560.36

  • Monoclinic, P 21 /c

  • a = 12.16673 (18) Å

  • b = 15.5692 (2) Å

  • c = 12.6240 (2) Å

  • β = 104.6721 (16)°

  • V = 2313.33 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 290 K

  • 0.80 × 0.74 × 0.40 mm

Data collection
  • Oxford Xcalibur diffractometer with Eos detector

  • Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd., Oxford, UK.]) Tmin = 0.805, Tmax = 1.000

  • 95191 measured reflections

  • 6746 independent reflections

  • 5888 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.084

  • S = 1.06

  • 6746 reflections

  • 330 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.72 (2) 1.98 (2) 2.694 (2) 175 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd., Oxford, UK.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemistry of manganese carbonyl complexes is of significant interest for at least two reasons. On the one hand there is a long standing interest in simple organometallic Mn(CO)3 complexes, reflected by more than 2200 structures reported in the CCDC. On the other hand they are known to undergo a plethora of photochemical reactions, e.g. photochemical mediated cycloaddition reactions yielding complex organic ligand systems coordinated to a manganese center (e.g. Kreiter et al., 1994, 1995). Recently, manganese tricarbonyl complexes of tripodal N,N,N-ligands, like tris(imidazolyl)carbinols (Breslow et al., 1983; Tang et al. 1978), have been shown to be photoinduced CO-releasing molecules (photoCORMs). The CO-release characteristics, e.g. the rate and half-life time for the release, are dependent on the ligands used to stabilize the Mn(CO)3 core (Huber et al., 2012; Berends & Kurz, 2012; Brückmann et al., 2011; Kunz et al., 2009; Niesel et al., 2008). The manganese complex cation shows N,N,N-coordination in the solid state, which has also been observed for the corresponding rhenium(I) complex, in which the carbinol OH has been methylated (Herrick et al., 2008). The spectroscopic data in solution (IR and NMR, Huber et al., 2012) of the title compound are in accord with C3v symmetry and therefore with the N,N,N-coordination found in the solid state. This indicates that coordination of the carbinol OH group is not favored, as found in other carbinol ligands (Stamatatos et al., 2009; Herrick et al., 2008).

The asymmetric unit of the title structure, consisting of a complex manganese cation and the trifluoromethanesulfonate counteranion, is shown in Fig. 1. The coordination polyhedron around the central manganese(I) atom is slightly distorted from octahedral symmetry. All Mn—N and Mn—C distances are in the expected range for a manganese(I) tricarbonyl complex. The three angles between the three CO ligands are near 90°, which is typical for the Mn(CO)3 fragment (e.g. Kreiter et al., 1995). The three angles N—Mn—N are significantly smaller than 90° (82.76 (2) to 85.51 (6)°), which is a result of the bite angle the tripodal ligand. The complex cation is connected to the trifluoromethanesulfonate counter-anion by only one O—H···O hydrogen bond, between the carbinol group of the complex cation and one of the O atoms of the trifluoromethanesulfonate anion.

Related literature top

For the structures of related complexes, see: Niesel et al. (2008); Herrick et al. (2008); Kunz et al. (2009). For details of the chemistry of tris(imidazolyl-2-yl)carbinol ligands, see: Stamatatos et al. (2009); Breslow et al. (1983); Tang et al. (1978). For details of the chemistry of Mn(CO)3 complexes, see: Kreiter et al. (1994, 1995); Brückmann et al. (2011); Huber et al. (2012); Berends & Kurz (2012).

Experimental top

The synthesis of the title compound was performed as recently reported (Huber et al. 2012). The title compound was crystallized from methanol solution by slow vapor diffusion of diethyl ether to yield yellow crystals. 1H NMR (200 MHz, [D4]methanol): δ = 4.12 (s, 9 H, NCH3), 7.17 (d, 3JH,H = 1.4 Hz, 3 H, Him), 7.42 (d, 3JH,H = 1.4 Hz, 3 H, Him) p.p.m. 13C{1H} NMR (125 MHz, [D4]methanol): δ = 37.0, 78.4, 126.1, 132.0, 145.1 p.p.m. ESI-MS (MeOH): m/z (%) = 411.1 (36) [M]+, 354.9 (12) [M-2CO]+, 327.3 (100) [M-3CO]+. C17H16F3MnN6O7S (560.3): calcd. C 36.44, H 2.88, N 15.00; found C 36.75, H 2.55, N 14.86. IR (KBr): ν = 2044, 1936, 1907 cm-1. IR (CH2Cl2): ν = 2037, 1935 cm-1.

Refinement top

All H-atom positions were identified in difference Fourier maps. In the later stages of refinement the H atoms of the methyl groups and the H atoms of the rings of the tripodal ligand were refined using a riding model. The Uiso values of the methyl H atoms were set to 1.5 times the equivalent isotropic displacement parameter of the C atom they are attached to. The Uiso values of the H atoms at the rings of the tripodal ligand were refined freely. The coordinates and the Uiso value of the H atom of the carbinol function were refined freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Diamond (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound.
Tricarbonyl[tris(1-methyl-1H-imidazol-2-yl- κN3)methanol]manganese(I) trifluoromethanesulfonate top
Crystal data top
[Mn(C13H16N6O)(CO)3]·CF3O3SF(000) = 1136
Mr = 560.36Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50962 reflections
a = 12.16673 (18) Åθ = 3.0–31.7°
b = 15.5692 (2) ŵ = 0.74 mm1
c = 12.6240 (2) ÅT = 290 K
β = 104.6721 (16)°Block, yellow
V = 2313.33 (6) Å30.80 × 0.74 × 0.40 mm
Z = 4
Data collection top
Oxford Xcalibur with Eos detector?
diffractometer
6746 independent reflections
Radiation source: fine-focus sealed tube5888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.2711 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2009)
k = 2121
Tmin = 0.805, Tmax = 1.000l = 1717
95191 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.015P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6746 reflectionsΔρmax = 0.37 e Å3
330 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00166 (17)
Crystal data top
[Mn(C13H16N6O)(CO)3]·CF3O3SV = 2313.33 (6) Å3
Mr = 560.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.16673 (18) ŵ = 0.74 mm1
b = 15.5692 (2) ÅT = 290 K
c = 12.6240 (2) Å0.80 × 0.74 × 0.40 mm
β = 104.6721 (16)°
Data collection top
Oxford Xcalibur with Eos detector?
diffractometer
6746 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2009)
5888 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 1.000Rint = 0.027
95191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
6746 reflectionsΔρmin = 0.51 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.10254 (2)0.295254 (17)0.16048 (2)0.03656 (8)
O10.35083 (11)0.49536 (9)0.35279 (11)0.0412 (3)
H10.4054 (19)0.4867 (14)0.3424 (18)0.044 (6)*
N10.19095 (13)0.38711 (10)0.10358 (12)0.0389 (3)
C10.27555 (12)0.43432 (10)0.29428 (13)0.0315 (3)
O20.11219 (16)0.32763 (15)0.00447 (16)0.0896 (6)
N20.07555 (11)0.39388 (10)0.26080 (12)0.0354 (3)
C20.25808 (13)0.44160 (10)0.17035 (14)0.0333 (3)
O30.02144 (16)0.17630 (12)0.27000 (15)0.0730 (5)
N30.25271 (12)0.27691 (9)0.27527 (12)0.0370 (3)
C30.18358 (19)0.41522 (14)0.00092 (16)0.0503 (5)
H30.14200.38900.06470.060 (7)*
O40.16020 (19)0.15860 (12)0.02292 (16)0.0834 (6)
N40.29270 (13)0.50443 (10)0.11247 (13)0.0416 (3)
C40.2463 (2)0.48683 (15)0.00382 (17)0.0542 (5)
H40.25630.51850.05550.070 (8)*
N50.11867 (12)0.50560 (9)0.37074 (12)0.0369 (3)
C50.35957 (19)0.58200 (14)0.1479 (2)0.0597 (6)
H5A0.32800.61290.19910.090*
H5B0.35790.61770.08550.090*
H5C0.43670.56640.18230.090*
N60.38841 (12)0.31476 (10)0.41865 (13)0.0418 (3)
C60.15755 (13)0.44636 (10)0.31180 (13)0.0314 (3)
C70.02132 (14)0.42127 (13)0.28780 (16)0.0434 (4)
H70.09290.39670.26340.051 (6)*
C80.00426 (15)0.48947 (13)0.35522 (16)0.0452 (4)
H80.04590.52000.38570.052 (6)*
C90.18119 (19)0.57170 (14)0.44384 (18)0.0539 (5)
H9A0.23870.54510.50080.081*
H9B0.12970.60310.47580.081*
H9C0.21630.61030.40300.081*
C100.30911 (13)0.34236 (11)0.32977 (13)0.0332 (3)
C110.30031 (17)0.20377 (13)0.32892 (18)0.0476 (4)
H110.27880.14780.30770.051 (6)*
C120.38308 (18)0.22648 (14)0.41719 (18)0.0522 (5)
H120.42820.18940.46780.064 (7)*
C130.46166 (19)0.36356 (16)0.50876 (17)0.0602 (6)
H13A0.52070.39130.48340.090*
H13B0.49500.32520.56770.090*
H13C0.41720.40610.53420.090*
C140.02874 (18)0.31700 (15)0.05903 (18)0.0533 (5)
C150.13726 (19)0.21210 (14)0.07542 (17)0.0511 (5)
C160.02768 (17)0.22112 (13)0.22707 (17)0.0473 (4)
S10.61262 (4)0.42786 (4)0.23478 (5)0.05368 (14)
F10.7020 (2)0.30397 (12)0.36557 (18)0.1337 (10)
F20.7028 (2)0.28311 (15)0.2001 (2)0.1324 (9)
F30.55074 (19)0.26955 (13)0.24881 (19)0.1151 (7)
O50.55176 (13)0.45179 (12)0.31485 (14)0.0660 (4)
O60.72136 (14)0.46749 (12)0.25442 (18)0.0790 (6)
O70.54709 (19)0.42639 (18)0.12357 (16)0.1040 (8)
C170.6452 (2)0.31564 (18)0.2657 (3)0.0738 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03490 (13)0.03877 (14)0.03562 (13)0.00670 (10)0.00821 (10)0.00727 (10)
O10.0303 (6)0.0422 (7)0.0499 (7)0.0083 (5)0.0082 (5)0.0103 (6)
N10.0442 (8)0.0417 (8)0.0332 (7)0.0027 (6)0.0141 (6)0.0036 (6)
C10.0252 (7)0.0340 (8)0.0351 (8)0.0031 (6)0.0074 (6)0.0034 (6)
O20.0612 (11)0.1112 (17)0.0761 (13)0.0058 (11)0.0201 (9)0.0129 (12)
N20.0264 (6)0.0435 (8)0.0372 (7)0.0023 (5)0.0095 (5)0.0053 (6)
C20.0310 (7)0.0340 (8)0.0373 (8)0.0012 (6)0.0131 (6)0.0011 (6)
O30.0760 (11)0.0740 (12)0.0726 (11)0.0295 (9)0.0254 (9)0.0044 (9)
N30.0336 (7)0.0352 (7)0.0427 (8)0.0006 (5)0.0105 (6)0.0001 (6)
C30.0645 (13)0.0548 (12)0.0345 (9)0.0001 (10)0.0178 (9)0.0020 (8)
O40.1109 (16)0.0656 (11)0.0833 (13)0.0103 (11)0.0426 (12)0.0355 (10)
N40.0414 (8)0.0384 (8)0.0477 (8)0.0001 (6)0.0160 (7)0.0078 (6)
C40.0674 (13)0.0569 (12)0.0432 (10)0.0030 (10)0.0234 (10)0.0109 (9)
N50.0364 (7)0.0379 (7)0.0371 (7)0.0036 (6)0.0104 (6)0.0036 (6)
C50.0559 (12)0.0425 (11)0.0765 (15)0.0102 (9)0.0092 (11)0.0172 (10)
N60.0339 (7)0.0481 (9)0.0410 (8)0.0008 (6)0.0049 (6)0.0074 (7)
C60.0279 (7)0.0362 (8)0.0304 (7)0.0006 (6)0.0081 (6)0.0021 (6)
C70.0271 (7)0.0551 (11)0.0496 (10)0.0005 (7)0.0130 (7)0.0011 (8)
C80.0361 (9)0.0535 (11)0.0503 (10)0.0088 (8)0.0190 (8)0.0022 (9)
C90.0560 (12)0.0498 (11)0.0540 (12)0.0018 (9)0.0103 (9)0.0200 (9)
C100.0265 (7)0.0385 (8)0.0351 (8)0.0007 (6)0.0085 (6)0.0012 (6)
C110.0474 (10)0.0362 (9)0.0606 (12)0.0013 (8)0.0165 (9)0.0071 (8)
C120.0461 (10)0.0480 (11)0.0603 (12)0.0050 (9)0.0095 (9)0.0173 (9)
C130.0546 (12)0.0722 (15)0.0428 (11)0.0089 (11)0.0080 (9)0.0071 (10)
C140.0488 (11)0.0585 (12)0.0485 (11)0.0059 (9)0.0046 (9)0.0109 (9)
C150.0586 (12)0.0473 (11)0.0498 (11)0.0125 (9)0.0180 (9)0.0102 (9)
C160.0444 (10)0.0491 (11)0.0464 (10)0.0101 (8)0.0080 (8)0.0088 (8)
S10.0363 (2)0.0724 (4)0.0550 (3)0.0099 (2)0.0165 (2)0.0156 (3)
F10.190 (2)0.0667 (11)0.1016 (15)0.0248 (13)0.0427 (15)0.0090 (10)
F20.1315 (18)0.1085 (16)0.174 (2)0.0228 (14)0.0696 (17)0.0448 (16)
F30.1188 (16)0.0877 (13)0.1425 (18)0.0411 (12)0.0400 (14)0.0251 (13)
O50.0524 (9)0.0804 (12)0.0741 (11)0.0120 (8)0.0325 (8)0.0101 (9)
O60.0489 (9)0.0765 (12)0.1204 (16)0.0028 (8)0.0379 (10)0.0115 (11)
O70.0862 (14)0.161 (2)0.0569 (11)0.0263 (15)0.0037 (10)0.0251 (13)
C170.0713 (16)0.0631 (15)0.0827 (19)0.0039 (13)0.0116 (14)0.0165 (14)
Geometric parameters (Å, º) top
Mn1—C151.799 (2)N5—C81.379 (2)
Mn1—C161.804 (2)N5—C91.461 (2)
Mn1—C141.808 (2)C5—H5A0.9600
Mn1—N12.0273 (15)C5—H5B0.9600
Mn1—N32.0441 (15)C5—H5C0.9600
Mn1—N22.0688 (14)N6—C101.351 (2)
O1—C11.3946 (19)N6—C121.376 (3)
O1—H10.72 (2)N6—C131.467 (3)
N1—C21.322 (2)C7—C81.347 (3)
N1—C31.371 (2)C7—H70.9300
C1—C61.519 (2)C8—H80.9300
C1—C101.525 (2)C9—H9A0.9600
C1—C21.529 (2)C9—H9B0.9600
O2—C141.135 (3)C9—H9C0.9600
N2—C61.324 (2)C11—C121.346 (3)
N2—C71.375 (2)C11—H110.9300
C2—N41.351 (2)C12—H120.9300
O3—C161.141 (2)C13—H13A0.9600
N3—C101.320 (2)C13—H13B0.9600
N3—C111.376 (2)C13—H13C0.9600
C3—C41.343 (3)S1—O61.4234 (17)
C3—H30.9300S1—O71.428 (2)
O4—C151.142 (3)S1—O51.4449 (16)
N4—C41.372 (3)S1—C171.812 (3)
N4—C51.462 (3)F1—C171.288 (3)
C4—H40.9300F2—C171.314 (3)
N5—C61.344 (2)F3—C171.325 (3)
C15—Mn1—C1692.31 (9)H5A—C5—H5C109.5
C15—Mn1—C1490.62 (10)H5B—C5—H5C109.5
C16—Mn1—C1489.44 (10)C10—N6—C12106.58 (16)
C15—Mn1—N194.03 (8)C10—N6—C13130.15 (17)
C16—Mn1—N1172.75 (7)C12—N6—C13123.03 (17)
C14—Mn1—N193.99 (9)N2—C6—N5111.42 (14)
C15—Mn1—N391.13 (8)N2—C6—C1118.49 (14)
C16—Mn1—N392.66 (8)N5—C6—C1130.06 (14)
C14—Mn1—N3177.21 (8)C8—C7—N2109.01 (16)
N1—Mn1—N383.72 (6)C8—C7—H7125.5
C15—Mn1—N2175.58 (8)N2—C7—H7125.5
C16—Mn1—N290.71 (8)C7—C8—N5107.26 (15)
C14—Mn1—N292.63 (8)C7—C8—H8126.4
N1—Mn1—N282.76 (6)N5—C8—H8126.4
N3—Mn1—N285.51 (6)N5—C9—H9A109.5
C1—O1—H1106.7 (18)N5—C9—H9B109.5
C2—N1—C3106.73 (16)H9A—C9—H9B109.5
C2—N1—Mn1121.61 (11)N5—C9—H9C109.5
C3—N1—Mn1130.91 (14)H9A—C9—H9C109.5
O1—C1—C6110.92 (13)H9B—C9—H9C109.5
O1—C1—C10113.15 (13)N3—C10—N6110.77 (15)
C6—C1—C10105.41 (13)N3—C10—C1120.42 (14)
O1—C1—C2113.20 (13)N6—C10—C1128.64 (15)
C6—C1—C2104.38 (12)C12—C11—N3108.87 (18)
C10—C1—C2109.14 (13)C12—C11—H11125.6
C6—N2—C7106.01 (14)N3—C11—H11125.6
C6—N2—Mn1122.61 (11)C11—C12—N6107.24 (17)
C7—N2—Mn1131.37 (12)C11—C12—H12126.4
N1—C2—N4110.29 (15)N6—C12—H12126.4
N1—C2—C1120.54 (14)N6—C13—H13A109.5
N4—C2—C1128.73 (15)N6—C13—H13B109.5
C10—N3—C11106.49 (15)H13A—C13—H13B109.5
C10—N3—Mn1120.98 (12)N6—C13—H13C109.5
C11—N3—Mn1130.84 (13)H13A—C13—H13C109.5
C4—C3—N1108.91 (18)H13B—C13—H13C109.5
C4—C3—H3125.5O2—C14—Mn1177.5 (2)
N1—C3—H3125.5O4—C15—Mn1178.9 (2)
C2—N4—C4106.87 (16)O3—C16—Mn1177.9 (2)
C2—N4—C5131.21 (17)O6—S1—O7116.17 (14)
C4—N4—C5121.81 (17)O6—S1—O5112.63 (12)
C3—C4—N4107.19 (17)O7—S1—O5115.74 (12)
C3—C4—H4126.4O6—S1—C17103.75 (12)
N4—C4—H4126.4O7—S1—C17103.49 (15)
C6—N5—C8106.29 (14)O5—S1—C17102.74 (13)
C6—N5—C9129.29 (15)F1—C17—F2108.8 (3)
C8—N5—C9124.30 (16)F1—C17—F3108.1 (3)
N4—C5—H5A109.5F2—C17—F3105.6 (2)
N4—C5—H5B109.5F1—C17—S1112.37 (19)
H5A—C5—H5B109.5F2—C17—S1111.0 (2)
N4—C5—H5C109.5F3—C17—S1110.8 (2)
C15—Mn1—N1—C2135.39 (15)C7—N2—C6—C1177.73 (15)
C14—Mn1—N1—C2133.71 (15)Mn1—N2—C6—C11.0 (2)
N3—Mn1—N1—C244.69 (14)C8—N5—C6—N20.3 (2)
N2—Mn1—N1—C241.56 (13)C9—N5—C6—N2175.87 (18)
C15—Mn1—N1—C355.91 (19)C8—N5—C6—C1177.59 (17)
C14—Mn1—N1—C335.00 (19)C9—N5—C6—C16.2 (3)
N3—Mn1—N1—C3146.60 (18)O1—C1—C6—N2179.32 (15)
N2—Mn1—N1—C3127.15 (18)C10—C1—C6—N257.86 (18)
C16—Mn1—N2—C6132.48 (15)C2—C1—C6—N257.08 (19)
C14—Mn1—N2—C6138.05 (15)O1—C1—C6—N51.5 (2)
N1—Mn1—N2—C644.36 (14)C10—C1—C6—N5124.35 (18)
N3—Mn1—N2—C639.86 (14)C2—C1—C6—N5120.71 (18)
C16—Mn1—N2—C749.16 (17)C6—N2—C7—C80.4 (2)
C14—Mn1—N2—C740.31 (18)Mn1—N2—C7—C8178.98 (13)
N1—Mn1—N2—C7134.01 (17)N2—C7—C8—N50.2 (2)
N3—Mn1—N2—C7141.77 (17)C6—N5—C8—C70.1 (2)
C3—N1—C2—N40.9 (2)C9—N5—C8—C7176.38 (18)
Mn1—N1—C2—N4170.19 (11)C11—N3—C10—N62.23 (19)
C3—N1—C2—C1173.97 (15)Mn1—N3—C10—N6164.50 (11)
Mn1—N1—C2—C12.9 (2)C11—N3—C10—C1178.01 (15)
O1—C1—C2—N1178.58 (15)Mn1—N3—C10—C111.3 (2)
C6—C1—C2—N160.70 (19)C12—N6—C10—N31.9 (2)
C10—C1—C2—N151.60 (19)C13—N6—C10—N3172.51 (19)
O1—C1—C2—N49.8 (2)C12—N6—C10—C1177.26 (17)
C6—C1—C2—N4110.93 (18)C13—N6—C10—C12.8 (3)
C10—C1—C2—N4136.77 (17)O1—C1—C10—N3173.45 (14)
C15—Mn1—N3—C10143.22 (14)C6—C1—C10—N365.17 (18)
C16—Mn1—N3—C10124.41 (14)C2—C1—C10—N346.45 (19)
N1—Mn1—N3—C1049.29 (13)O1—C1—C10—N611.6 (2)
N2—Mn1—N3—C1033.90 (13)C6—C1—C10—N6109.79 (18)
C15—Mn1—N3—C1153.69 (18)C2—C1—C10—N6138.60 (17)
C16—Mn1—N3—C1138.68 (18)C10—N3—C11—C121.7 (2)
N1—Mn1—N3—C11147.62 (17)Mn1—N3—C11—C12163.23 (14)
N2—Mn1—N3—C11129.18 (17)N3—C11—C12—N60.5 (2)
C2—N1—C3—C40.2 (2)C10—N6—C12—C110.8 (2)
Mn1—N1—C3—C4169.76 (15)C13—N6—C12—C11174.13 (19)
N1—C2—N4—C41.3 (2)O6—S1—C17—F160.3 (3)
C1—C2—N4—C4173.59 (17)O7—S1—C17—F1178.0 (2)
N1—C2—N4—C5174.82 (19)O5—S1—C17—F157.2 (3)
C1—C2—N4—C52.5 (3)O6—S1—C17—F261.8 (2)
N1—C3—C4—N40.6 (2)O7—S1—C17—F259.9 (2)
C2—N4—C4—C31.1 (2)O5—S1—C17—F2179.2 (2)
C5—N4—C4—C3175.44 (19)O6—S1—C17—F3178.7 (2)
C7—N2—C6—N50.5 (2)O7—S1—C17—F357.0 (2)
Mn1—N2—C6—N5179.18 (11)O5—S1—C17—F363.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.72 (2)1.98 (2)2.694 (2)175 (2)

Experimental details

Crystal data
Chemical formula[Mn(C13H16N6O)(CO)3]·CF3O3S
Mr560.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)12.16673 (18), 15.5692 (2), 12.6240 (2)
β (°) 104.6721 (16)
V3)2313.33 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.80 × 0.74 × 0.40
Data collection
DiffractometerOxford Xcalibur with Eos detector?
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Oxford Diffraction, 2009)
Tmin, Tmax0.805, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
95191, 6746, 5888
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.084, 1.06
No. of reflections6746
No. of parameters330
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.51

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Diamond (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.72 (2)1.98 (2)2.694 (2)175 (2)
 

Acknowledgements

This publication was funded by the German Research Foundation (DFG) and Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.

References

First citationBerends, H.-M. & Kurz, P. (2012). Inorg. Chim. Acta, 380, 141–147.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreslow, R., Hunt, J. T., Smiley, R. & Tarnowski, T. (1983). J. Am. Chem. Soc. 105, 5337–5342.  CrossRef CAS Web of Science Google Scholar
First citationBrückmann, N. E., Wahl, M., Reiss, G. J., Kohns, M., Wätjen, W. & Kunz, P. C. (2011). Eur. J. Inorg. Chem. pp. 4571–4577.  Google Scholar
First citationHerrick, R. S., Ziegler, C., Jameson, D. & Aquina, C. (2008). Dalton Trans. pp. 3605–3609.  Web of Science CSD CrossRef Google Scholar
First citationHuber, W., Linder, R., Niesel, J., Schatzschneider, U., Spingler, B. & Kunz, P. C. (2012). Eur. J. Inorg. Chem. pp. 3140–3146.  Web of Science CSD CrossRef Google Scholar
First citationKreiter, C. G., Fiedler, C., Frank, W. & Reiss, G. J. (1995). J. Organomet. Chem. 490, 133–141.  CSD CrossRef CAS Web of Science Google Scholar
First citationKreiter, C. G., Koch, E.-C., Frank, W. & Reiss, G. J. (1994). Inorg. Chim. Acta, 220, 77–83.  CSD CrossRef CAS Web of Science Google Scholar
First citationKunz, P. C., Huber, W., Rojas, A., Schatzschneider, U. & Spingler, B. (2009). Eur. J. Inorg. Chem. pp. 5358–5366.  Web of Science CSD CrossRef Google Scholar
First citationNiesel, J., Pinto, A., Peindy N'Dongo, H. W., Merz, K., Ott, I., Gust, R. & Schatzschneider, U. (2008). Chem. Commun. pp. 1798–1800.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd., Oxford, UK.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Efthymiou, C. G., Stoumpos, C. C. & Perlepes, S. P. (2009). Eur. J. Inorg. Chem. pp. 3361–3391.  Web of Science CrossRef Google Scholar
First citationTang, C. C., Davalian, D., Huang, P. & Breslow, R. (1978). J. Am. Chem. Soc. 100, 3918–3922.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1202-m1203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds