organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4,6-Tri­methyl­phen­yl)boronic acid–tri­phenyl­phosphine oxide (1/1)

aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: ciprian.rat@ubbcluj.ro

(Received 20 November 2011; accepted 30 November 2011; online 7 December 2011)

In the crystal structure of the title compound, C9H13BO2·C18H15OP, there are O—H⋯O hydrogen bonds between the O atom of triphenyl­phosphine oxide and one hy­droxy group of the boronic acid. Boronic acid mol­ecules form inversion-related hydrogen-bonded dimers in an R22(8) motif. The structure is consolidated by inter­molecular C—H⋯O bonds and C—H⋯π inter­actions.

Related literature

For applications of boronic acids, see: Suzuki (2011[Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.]); Yang et al. (2011[Yang, X., Chen, Y., Jin, S. & Binghe, W. (2011). Artificial Receptors for Chemical Sensors, edited by V. Mirsky & A. Yatsimirsky, pp. 169-190. Weinheim: Wiley-VCH.]); Furukawa & Yaghi (2009[Furukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875-8883.]). For recently reported structures of triphenyl­phosphine oxide and triphenyl­phos­phine oxide hemihydrate, see: Sivaramkrishna et al. (2007[Sivaramkrishna, A., Su, H. & Moss, J. R. (2007). Private communication (refcode TPEPHO13). CCDC, Cambridge, England.]); Ng (2009[Ng, S. W. (2009). Acta Cryst. E65, o1431.]). For structures of related boronic acids, see: Filthaus et al. (2008[Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.]), Cyrański et al. (2008[Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472-482.]); Rettig & Trotter (1977[Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13BO2·C18H15OP

  • Mr = 442.27

  • Monoclinic, P 21 /c

  • a = 12.218 (4) Å

  • b = 12.339 (4) Å

  • c = 16.983 (5) Å

  • β = 95.651 (5)°

  • V = 2548.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 297 K

  • 0.52 × 0.45 × 0.42 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.947

  • 23787 measured reflections

  • 4486 independent reflections

  • 3727 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.186

  • S = 1.19

  • 4486 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C19–C24 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.84 2.645 (3) 168
O3—H3A⋯O2i 0.82 1.99 2.795 (4) 169
C4—H4⋯O1ii 0.93 2.41 3.326 (4) 167
C6—H6⋯Cg4 0.93 2.88 3.728 (4) 152
C15—H15⋯Cg4iii 0.93 2.69 3.602 (5) 168
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Boronic acids are widely used as starting materials in Suzuki-Miyaura cross-coupling reactions (Suzuki, 2011), as sensors or binders for carbohydrates (Yang et al., 2011) or building blocks for covalent organic frameworks (Furukawa & Yaghi, 2009). Although there are a large number of reported crystal structures for aromatic boronic acids, the structure of mesitylboronic acid has not been reported yet. We present here the crystal structure of the mesityl boronic acid - triphenylphosphine oxide (1:1) adduct.

In the title compound there is an O—H···O bond between the hydrogen atom of a hydroxy group and the oxygen atom of the triphenylphosphine oxide (Fig. 1). The triphenylphosphine oxide molecules are connected into chains by weak C—H···O hydrogen bonds along the c axis direction (Table 1 and Fig. 2). The PO bond length (1.479 (2) Å) is in the range of the values found for triphenylphosphine oxide (1.4863 (12) Å) (Sivaramkrishna et al., 2007), or triphenylphosphine oxide hemidydrate (1.4871 (15) Å) (Ng, 2009).

The molecules of the mesitylboronic acid assemble into centrosymmetric dimers through a pair of O—H···O bonds between the hydroxy groups (Fig. 2). In contrast to the structure of phenylboronic acid where the centrosymmetric dimers are interconnected to one-dimensional chains (Rettig & Trotter, 1977; Cyrański et al. 2008), in the structure of the title compound, the triphenylphosphine oxide molecules block further assembly of the dimers.

In comparison to phenylboronic acid, where the angles between the BO2 plane and the aromatic ring plane are 6.6° and 21.4° (Rettig & Trotter, 1977) or 6.3° and 21.0° (Cyrański et al., 2008), in the title compound the angle is 75.0 (2)°. This value is close to the values found for the related pentamethylphenylboronic acid (74.7°, 85.9°) (Filthaus et al., 2008).

The mesitylboronic dimers and the triphenylphosphine oxide chains are interconnected, additionally to the O—H···O bonds, through C—H···π interactions (Table 1 and Fig. 2). In the crystal there are alternate layers of mesitylboronic acid and triphenylphosphine oxide along the a-axis (Fig. 3).

Related literature top

For applications of boronic acids, see: Suzuki (2011); Yang et al. (2011); Furukawa & Yaghi (2009). For recently reported structures of triphenylphosphine oxide and triphenylphosphine oxide hemihydrate, see: Sivaramkrishna et al. (2007); Ng (2009). For structures of related boronic acids, see: Filthaus et al. (2008), Cyrański et al. (2008); Rettig & Trotter (1977).

Experimental top

The title compound was serendipitously obtained in a Suzuki-Miyaura cross-coupling reaction between mesitylboronic acid and tert-butyl N-(tert-butoxycarbonyl)-N-(2,4,6- tribromophenyl)carbamate using tetrakis(triphenlyphosphine)palladium as catalyst. Prior to column chromatography of the crude product mixture a solid precipitated from the mobile phase (diethyl ether: petroleum ether = 1:8). Colourless crystals were obtained by recrystallization of the precipitate from hot toluene.

Refinement top

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic atoms and 1.5 for hydrogen atoms of the methyl groups and of the hydroxy groups. Methyl hydrogen atoms were allowed to rotate but not to tip. The hydrogen atoms of the hydroxy group were allowed to rotate about the O—B bond and their positions were calculated from the electron density. The C—H bond lengths were set at 0.93 Å for the aromatic groups, 0.96 Å for the methyl groups. The O—H bond lengths were set at 0.82 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with ellipsoids of non-hydrogen atoms drawn at the 25% probability level.
[Figure 2] Fig. 2. Intramolecular and intermolecular hydrogen bonds and C—H···π interactions in the structure of the title compound shown as dashed lines. Symmetry codes: (i) -x+1, -y, -z; (ii) x, -y+1/2, z+1/2; (iii) x+1, y, z; (iv) x-1, y, z; (v) x, -y+1/2, z-1/2; (vi) -x+1, y-1/2, -z-1/2; (vii) -x, -y, -z; (viii) -x+2, -y, -z; (ix) -x+1, y-1/2, -z+1/2
[Figure 3] Fig. 3. Capped stick representation of the crystal packing of the title compound, viewed along the c axis. Hydrogen bonds and C—H···π interactions shown as dashed lines (blue and green, respectively).
(2,4,6-Trimethylphenyl)boronic acid–triphenylphosphine oxide (1/1) top
Crystal data top
C9H13BO2·C18H15OPF(000) = 936
Mr = 442.27Dx = 1.153 Mg m3
Monoclinic, P21/cMelting point: 401 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.218 (4) ÅCell parameters from 7170 reflections
b = 12.339 (4) Åθ = 2.2–26.0°
c = 16.983 (5) ŵ = 0.13 mm1
β = 95.651 (5)°T = 297 K
V = 2548.0 (14) Å3Block, colourless
Z = 40.52 × 0.45 × 0.42 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4486 independent reflections
Radiation source: fine-focus sealed tube3727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.934, Tmax = 0.947k = 1414
23787 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0654P)2 + 1.8657P]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C9H13BO2·C18H15OPV = 2548.0 (14) Å3
Mr = 442.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.218 (4) ŵ = 0.13 mm1
b = 12.339 (4) ÅT = 297 K
c = 16.983 (5) Å0.52 × 0.45 × 0.42 mm
β = 95.651 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3727 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.947Rint = 0.052
23787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.19Δρmax = 0.40 e Å3
4486 reflectionsΔρmin = 0.32 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.4462 (3)0.1262 (3)0.0679 (3)0.0532 (10)
C10.7708 (3)0.2938 (3)0.24399 (18)0.0454 (8)
C20.8540 (3)0.2801 (4)0.3042 (2)0.0760 (13)
H20.92640.27290.29230.091*
C30.8303 (4)0.2772 (4)0.3817 (2)0.0881 (15)
H30.8870.26980.42210.106*
C40.7244 (4)0.2850 (4)0.3997 (2)0.0732 (12)
H40.70850.28090.45210.088*
C50.6422 (3)0.2990 (4)0.3407 (2)0.0711 (12)
H50.570.30570.3530.085*
C60.6645 (3)0.3033 (3)0.2629 (2)0.0558 (9)
H60.60740.31270.22310.067*
C70.8321 (3)0.4379 (3)0.12130 (19)0.0445 (8)
C80.8551 (4)0.5149 (4)0.1778 (3)0.0886 (15)
H80.85390.49690.23090.106*
C90.8799 (5)0.6187 (5)0.1572 (3)0.116 (2)
H90.89440.67040.19660.14*
C100.8837 (4)0.6475 (4)0.0815 (4)0.0943 (16)
H100.90240.71780.06840.113*
C110.8599 (4)0.5720 (4)0.0243 (3)0.0932 (15)
H110.86190.59090.02850.112*
C120.8328 (4)0.4686 (3)0.0436 (2)0.0732 (12)
H120.81470.41840.00360.088*
C130.9137 (3)0.2202 (3)0.12764 (18)0.0462 (8)
C141.0189 (3)0.2615 (3)0.1331 (2)0.0600 (10)
H141.03070.33410.14580.072*
C151.1067 (3)0.1965 (5)0.1199 (3)0.0791 (13)
H151.17730.22540.12320.095*
C161.0903 (4)0.0898 (5)0.1019 (3)0.0851 (14)
H161.14990.04620.09290.102*
C170.9869 (4)0.0465 (4)0.0970 (3)0.0833 (14)
H170.97620.02670.08560.1*
C180.8983 (3)0.1118 (3)0.1091 (2)0.0654 (11)
H180.82780.08260.10480.078*
C190.4131 (2)0.2237 (3)0.1205 (2)0.0499 (9)
C200.3890 (3)0.2063 (3)0.1978 (3)0.0649 (11)
C210.3536 (3)0.2925 (4)0.2418 (3)0.0792 (14)
H210.33890.28050.29380.095*
C220.3398 (4)0.3942 (4)0.2105 (4)0.0868 (16)
C230.3665 (3)0.4111 (4)0.1346 (3)0.0799 (14)
H230.36030.48050.11330.096*
C240.4023 (3)0.3276 (3)0.0892 (3)0.0613 (10)
C250.4022 (4)0.0969 (5)0.2351 (3)0.1026 (17)
H25A0.47620.0720.23260.154*
H25B0.35190.04710.20740.154*
H25C0.3870.10130.28940.154*
C260.2944 (5)0.4862 (5)0.2583 (4)0.139 (3)
H26A0.32260.47940.31290.209*
H26B0.21560.48230.25380.209*
H26C0.31670.55460.23820.209*
C270.4303 (4)0.3506 (4)0.0065 (3)0.0922 (15)
H27A0.50880.35190.00590.138*
H27B0.40030.41950.01050.138*
H27C0.39970.29490.02850.138*
O10.69683 (17)0.2649 (2)0.08921 (13)0.0520 (6)
O20.55104 (18)0.1109 (2)0.04987 (17)0.0615 (7)
H2A0.58850.16380.06420.092*
O30.3685 (2)0.0561 (2)0.0395 (2)0.0792 (9)
H3A0.39460.01340.00950.119*
P10.79424 (7)0.30091 (7)0.14123 (5)0.0403 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.042 (2)0.049 (2)0.071 (3)0.0051 (18)0.0146 (19)0.011 (2)
C10.0455 (19)0.054 (2)0.0379 (17)0.0065 (16)0.0080 (14)0.0018 (15)
C20.054 (2)0.133 (4)0.041 (2)0.003 (2)0.0049 (17)0.008 (2)
C30.077 (3)0.147 (5)0.040 (2)0.011 (3)0.002 (2)0.015 (3)
C40.092 (3)0.089 (3)0.043 (2)0.009 (3)0.027 (2)0.006 (2)
C50.068 (3)0.096 (3)0.054 (2)0.008 (2)0.028 (2)0.008 (2)
C60.056 (2)0.067 (2)0.046 (2)0.0010 (18)0.0137 (16)0.0003 (18)
C70.0386 (17)0.054 (2)0.0414 (18)0.0058 (15)0.0071 (14)0.0007 (16)
C80.121 (4)0.086 (3)0.060 (3)0.052 (3)0.016 (3)0.010 (2)
C90.169 (6)0.092 (4)0.091 (4)0.069 (4)0.028 (4)0.024 (3)
C100.100 (4)0.060 (3)0.123 (5)0.026 (3)0.013 (3)0.012 (3)
C110.112 (4)0.088 (4)0.079 (3)0.014 (3)0.002 (3)0.031 (3)
C120.101 (3)0.063 (3)0.054 (2)0.013 (2)0.001 (2)0.009 (2)
C130.049 (2)0.056 (2)0.0354 (17)0.0041 (16)0.0121 (14)0.0053 (15)
C140.045 (2)0.070 (3)0.066 (2)0.0018 (18)0.0091 (17)0.008 (2)
C150.053 (2)0.109 (4)0.076 (3)0.010 (3)0.011 (2)0.021 (3)
C160.083 (3)0.106 (4)0.069 (3)0.039 (3)0.024 (2)0.011 (3)
C170.101 (4)0.064 (3)0.088 (3)0.012 (3)0.026 (3)0.006 (2)
C180.068 (3)0.063 (3)0.068 (3)0.006 (2)0.022 (2)0.004 (2)
C190.0327 (17)0.047 (2)0.071 (2)0.0016 (14)0.0082 (16)0.0158 (18)
C200.047 (2)0.071 (3)0.078 (3)0.0016 (19)0.0128 (19)0.014 (2)
C210.056 (2)0.106 (4)0.078 (3)0.000 (2)0.014 (2)0.037 (3)
C220.061 (3)0.079 (4)0.121 (4)0.003 (2)0.010 (3)0.051 (3)
C230.069 (3)0.051 (2)0.119 (4)0.005 (2)0.006 (3)0.023 (3)
C240.049 (2)0.052 (2)0.083 (3)0.0019 (17)0.0062 (19)0.016 (2)
C250.106 (4)0.106 (4)0.101 (4)0.004 (3)0.037 (3)0.007 (3)
C260.121 (5)0.121 (5)0.180 (7)0.017 (4)0.034 (4)0.094 (5)
C270.092 (3)0.078 (3)0.108 (4)0.008 (3)0.019 (3)0.013 (3)
O10.0442 (13)0.0712 (16)0.0411 (13)0.0167 (11)0.0067 (10)0.0048 (11)
O20.0423 (14)0.0562 (16)0.0888 (19)0.0107 (11)0.0206 (13)0.0316 (14)
O30.0438 (14)0.0710 (19)0.126 (3)0.0144 (13)0.0257 (15)0.0464 (17)
P10.0377 (5)0.0521 (5)0.0318 (4)0.0119 (4)0.0073 (3)0.0019 (4)
Geometric parameters (Å, º) top
B1—O31.339 (5)C14—H140.93
B1—O21.359 (4)C15—C161.362 (7)
B1—C191.574 (5)C15—H150.93
C1—C61.374 (5)C16—C171.368 (7)
C1—C21.379 (5)C16—H160.93
C1—P11.798 (3)C17—C181.381 (6)
C2—C31.377 (5)C17—H170.93
C2—H20.93C18—H180.93
C3—C41.362 (6)C19—C241.388 (5)
C3—H30.93C19—C201.391 (5)
C4—C51.359 (6)C20—C211.393 (6)
C4—H40.93C20—C251.494 (6)
C5—C61.375 (5)C21—C221.368 (7)
C5—H50.93C21—H210.93
C6—H60.93C22—C231.375 (7)
C7—C81.360 (5)C22—C261.531 (6)
C7—C121.374 (5)C23—C241.383 (6)
C7—P11.794 (3)C23—H230.93
C8—C91.370 (7)C24—C271.505 (6)
C8—H80.93C25—H25A0.96
C9—C101.339 (7)C25—H25B0.96
C9—H90.93C25—H25C0.96
C10—C111.356 (7)C26—H26A0.96
C10—H100.93C26—H26B0.96
C11—C121.366 (6)C26—H26C0.96
C11—H110.93C27—H27A0.96
C12—H120.93C27—H27B0.96
C13—C141.377 (5)C27—H27C0.96
C13—C181.383 (5)O1—P11.479 (2)
C13—P11.801 (3)O2—H2A0.82
C14—C151.376 (6)O3—H3A0.82
O3—B1—O2118.7 (3)C16—C17—C18119.7 (4)
O3—B1—C19119.0 (3)C16—C17—H17120.1
O2—B1—C19122.3 (3)C18—C17—H17120.1
C6—C1—C2118.8 (3)C17—C18—C13120.5 (4)
C6—C1—P1117.9 (3)C17—C18—H18119.8
C2—C1—P1123.3 (3)C13—C18—H18119.8
C3—C2—C1120.2 (4)C24—C19—C20118.8 (3)
C3—C2—H2119.9C24—C19—B1120.6 (3)
C1—C2—H2119.9C20—C19—B1120.5 (3)
C4—C3—C2120.5 (4)C19—C20—C21119.7 (4)
C4—C3—H3119.8C19—C20—C25121.1 (4)
C2—C3—H3119.8C21—C20—C25119.2 (4)
C5—C4—C3119.6 (4)C22—C21—C20121.6 (5)
C5—C4—H4120.2C22—C21—H21119.2
C3—C4—H4120.2C20—C21—H21119.2
C4—C5—C6120.7 (4)C21—C22—C23118.2 (4)
C4—C5—H5119.6C21—C22—C26120.7 (6)
C6—C5—H5119.6C23—C22—C26121.1 (6)
C1—C6—C5120.2 (4)C22—C23—C24121.8 (5)
C1—C6—H6119.9C22—C23—H23119.1
C5—C6—H6119.9C24—C23—H23119.1
C8—C7—C12117.7 (4)C23—C24—C19119.9 (4)
C8—C7—P1124.3 (3)C23—C24—C27119.6 (4)
C12—C7—P1117.9 (3)C19—C24—C27120.6 (4)
C7—C8—C9120.5 (4)C20—C25—H25A109.5
C7—C8—H8119.8C20—C25—H25B109.5
C9—C8—H8119.8H25A—C25—H25B109.5
C10—C9—C8121.6 (5)C20—C25—H25C109.5
C10—C9—H9119.2H25A—C25—H25C109.5
C8—C9—H9119.2H25B—C25—H25C109.5
C9—C10—C11118.7 (5)C22—C26—H26A109.5
C9—C10—H10120.7C22—C26—H26B109.5
C11—C10—H10120.7H26A—C26—H26B109.5
C10—C11—C12120.7 (5)C22—C26—H26C109.5
C10—C11—H11119.7H26A—C26—H26C109.5
C12—C11—H11119.7H26B—C26—H26C109.5
C11—C12—C7120.8 (4)C24—C27—H27A109.5
C11—C12—H12119.6C24—C27—H27B109.5
C7—C12—H12119.6H27A—C27—H27B109.5
C14—C13—C18118.6 (3)C24—C27—H27C109.5
C14—C13—P1123.4 (3)H27A—C27—H27C109.5
C18—C13—P1118.1 (3)H27B—C27—H27C109.5
C15—C14—C13120.8 (4)B1—O2—H2A109.5
C15—C14—H14119.6B1—O3—H3A109.5
C13—C14—H14119.6O1—P1—C7112.18 (15)
C16—C15—C14120.0 (4)O1—P1—C1111.68 (14)
C16—C15—H15120C7—P1—C1107.33 (15)
C14—C15—H15120O1—P1—C13111.86 (15)
C15—C16—C17120.4 (4)C7—P1—C13105.64 (15)
C15—C16—H16119.8C1—P1—C13107.82 (15)
C17—C16—H16119.8
C6—C1—C2—C30.6 (7)B1—C19—C20—C254.8 (6)
P1—C1—C2—C3178.9 (4)C19—C20—C21—C221.2 (6)
C1—C2—C3—C41.6 (8)C25—C20—C21—C22179.8 (4)
C2—C3—C4—C51.9 (8)C20—C21—C22—C232.8 (7)
C3—C4—C5—C61.2 (7)C20—C21—C22—C26176.5 (4)
C2—C1—C6—C50.1 (6)C21—C22—C23—C242.5 (7)
P1—C1—C6—C5179.6 (3)C26—C22—C23—C24176.7 (4)
C4—C5—C6—C10.2 (6)C22—C23—C24—C190.7 (6)
C12—C7—C8—C91.2 (7)C22—C23—C24—C27179.9 (4)
P1—C7—C8—C9177.9 (4)C20—C19—C24—C231.0 (5)
C7—C8—C9—C100.8 (10)B1—C19—C24—C23175.9 (3)
C8—C9—C10—C111.5 (10)C20—C19—C24—C27178.4 (4)
C9—C10—C11—C120.2 (9)B1—C19—C24—C274.7 (5)
C10—C11—C12—C71.8 (8)C8—C7—P1—O1132.5 (4)
C8—C7—C12—C112.5 (7)C12—C7—P1—O144.2 (3)
P1—C7—C12—C11179.4 (4)C8—C7—P1—C19.4 (4)
C18—C13—C14—C150.4 (5)C12—C7—P1—C1167.3 (3)
P1—C13—C14—C15178.1 (3)C8—C7—P1—C13105.4 (4)
C13—C14—C15—C160.6 (6)C12—C7—P1—C1377.9 (3)
C14—C15—C16—C170.2 (7)C6—C1—P1—O127.1 (3)
C15—C16—C17—C181.1 (7)C2—C1—P1—O1153.4 (3)
C16—C17—C18—C131.3 (7)C6—C1—P1—C796.2 (3)
C14—C13—C18—C170.5 (6)C2—C1—P1—C783.3 (4)
P1—C13—C18—C17179.1 (3)C6—C1—P1—C13150.4 (3)
O3—B1—C19—C24103.4 (5)C2—C1—P1—C1330.1 (4)
O2—B1—C19—C2476.2 (5)C14—C13—P1—O1145.3 (3)
O3—B1—C19—C2073.4 (5)C18—C13—P1—O133.3 (3)
O2—B1—C19—C20106.9 (4)C14—C13—P1—C723.0 (3)
C24—C19—C20—C210.7 (5)C18—C13—P1—C7155.6 (3)
B1—C19—C20—C21176.2 (3)C14—C13—P1—C191.6 (3)
C24—C19—C20—C25178.3 (4)C18—C13—P1—C189.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C19–C24 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.842.645 (3)168
O3—H3A···O2i0.821.992.795 (4)169
C4—H4···O1ii0.932.413.326 (4)167
C6—H6···Cg40.932.883.728 (4)152
C15—H15···Cg4iii0.932.693.602 (5)168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H13BO2·C18H15OP
Mr442.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)12.218 (4), 12.339 (4), 16.983 (5)
β (°) 95.651 (5)
V3)2548.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.52 × 0.45 × 0.42
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.934, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
23787, 4486, 3727
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.186, 1.19
No. of reflections4486
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C19–C24 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.842.645 (3)168
O3—H3A···O2i0.821.992.795 (4)169
C4—H4···O1ii0.932.413.326 (4)167
C6—H6···Cg40.932.883.728 (4)152
C15—H15···Cg4iii0.932.693.602 (5)168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the National University Research Council (CNCS) of Romania (project TE295/2010). We thank Dr Albert Soran for the crystallographic measurements and data refinement.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472–482.  Google Scholar
First citationFilthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201–1207.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFurukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875–8883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNg, S. W. (2009). Acta Cryst. E65, o1431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivaramkrishna, A., Su, H. & Moss, J. R. (2007). Private communication (refcode TPEPHO13). CCDC, Cambridge, England.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722–6737.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X., Chen, Y., Jin, S. & Binghe, W. (2011). Artificial Receptors for Chemical Sensors, edited by V. Mirsky & A. Yatsimirsky, pp. 169–190. Weinheim: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds