organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(4-meth­­oxy­benz­yl)-6-methyl­pyrimidine-2,4(1H,3H)-dione

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: actaeli@gmail.com

(Received 10 June 2010; accepted 24 June 2010; online 30 June 2010)

The title compound, C21H22N2O4, was prepared by reaction of 6-methyl­pyrimidine-2,4(1H,3H)-dione and 1-chloro­methyl-4-meth­oxy­benzene. In the title mol­ecule, the central pyrimidine ring forms dihedral angles of 62.16 (4) and 69.77 (3)° with the two benzene rings. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For the applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]); as agrochemicals, see: Maeno et al. (1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]); as anti­viral agents, see: Gilchrist (1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]); as herbicides, see: Selby et al. (2002[Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74-84. Washington DC: American Chemical Society.]); Zhu et al. (2007[Zhu, Y.-Q., Zou, X.-M., Li, G.-C., Yao, C.-S. & Yang, H.-Z. (2007). Chin. J. Org. Chem. 27, 753-757.]). For a related structure, see: Yang & Li (2006[Yang, F.-L. & Li, G.-C. (2006). Acta Cryst. E62, o3405-o3406.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O4

  • Mr = 366.41

  • Monoclinic, P 21 /n

  • a = 8.4133 (9) Å

  • b = 9.929 (1) Å

  • c = 21.407 (3) Å

  • β = 91.614 (4)°

  • V = 1787.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.976, Tmax = 0.979

  • 17394 measured reflections

  • 4250 independent reflections

  • 3035 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 0.98

  • 4250 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O3i 0.95 2.51 3.3627 (14) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Pyrimidine derivatives are very important molecules in biology and have many applications in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted pyrimidines were reported (Selby et al., 2002); (Zhu et al., 2007), and we have previously reported a related structure (Yang & Li 2006). As part of our goal to discover further biologically active pyrimidine compounds, the title compound was synthesized and its crystal structure determined (Fig. 1).

In the title molecule, the central pyrimidine ring forms dihedral angles of 62.16 (4) and 69.77 (3)° with the two benzene rings. In the crystal, weak intermolecular C—H···O hydrogen bonds link molecules.

Related literature top

For the applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993); as agrochemicals, see: Maeno et al. (1990); as antiviral agents, see: Gilchrist (1997); as herbicides, see: Selby et al. (2002); Zhu et al. (2007). For a related structure, see: Yang & Li (2006).

Experimental top

6-methylpyrimidine-2,4(1H,3H)-dione (0.63 g, 5 mmol) and anhydrous potassium carbonate (0.84 g, 6 mmol) were mixed in dimethylformamide (20 ml). A solution of 1-(chloromethyl)-4-methoxybenzene (0.79 g, 5 mmol) in acetone (10 ml) was then added dropwise, with stirring at room temperature, and the mixture was stirred for another 10 h and then refluxed for 4 h. The solvent was evaporated in vacuo and the residue was washed with water. The resulting white precipitate was recrystallized from ethanol and single crystals were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95 Å, 0.98 Å or 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2009); cell refinement: CrystalClear (Rigaku/MSC, 2009); data reduction: CrystalClear (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
1,3-Bis(4-methoxybenzyl)-6-methylpyrimidine-2,4(1H,3H)-dione top
Crystal data top
C21H22N2O4F(000) = 776
Mr = 366.41Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 5810 reflections
a = 8.4133 (9) Åθ = 1.9–28.0°
b = 9.929 (1) ŵ = 0.10 mm1
c = 21.407 (3) ÅT = 113 K
β = 91.614 (4)°Prism, colorless
V = 1787.5 (3) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
4250 independent reflections
Radiation source: fine-focus sealed tube3035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω scansh = 911
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
k = 1213
Tmin = 0.976, Tmax = 0.979l = 2828
17394 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0556P)2]
where P = (Fo2 + 2Fc2)/3
4250 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H22N2O4V = 1787.5 (3) Å3
Mr = 366.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4133 (9) ŵ = 0.10 mm1
b = 9.929 (1) ÅT = 113 K
c = 21.407 (3) Å0.26 × 0.24 × 0.22 mm
β = 91.614 (4)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
4250 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
3035 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.979Rint = 0.037
17394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.98Δρmax = 0.29 e Å3
4250 reflectionsΔρmin = 0.16 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77270 (10)0.03179 (8)0.39409 (4)0.0326 (2)
O21.05849 (10)0.35414 (9)0.42566 (4)0.0349 (2)
O30.38155 (9)0.43800 (8)0.57937 (3)0.0258 (2)
O41.17640 (10)0.48075 (8)0.20574 (4)0.0286 (2)
N10.91553 (10)0.16121 (9)0.41019 (4)0.0235 (2)
N20.87518 (10)0.07201 (9)0.30901 (4)0.0231 (2)
C10.84910 (13)0.06125 (12)0.37267 (5)0.0244 (3)
C21.00559 (13)0.27014 (12)0.38848 (5)0.0257 (3)
C31.02826 (13)0.27076 (12)0.32258 (5)0.0257 (3)
H31.08930.34080.30490.031*
C40.96571 (13)0.17502 (11)0.28489 (5)0.0234 (2)
C50.99072 (15)0.17657 (13)0.21620 (5)0.0304 (3)
H5A1.06460.24920.20610.037*
H5B0.88880.19150.19400.037*
H5C1.03530.09000.20340.037*
C60.89544 (14)0.14901 (13)0.47867 (5)0.0275 (3)
H6A0.99400.18080.50030.033*
H6B0.88200.05260.48910.033*
C70.75633 (13)0.22666 (12)0.50352 (5)0.0229 (3)
C80.77921 (13)0.34760 (12)0.53566 (5)0.0244 (3)
H80.88330.38380.54060.029*
C90.65212 (13)0.41528 (12)0.56044 (5)0.0240 (3)
H90.66920.49720.58250.029*
C100.49895 (13)0.36351 (11)0.55308 (5)0.0213 (2)
C110.47377 (14)0.24358 (12)0.52095 (5)0.0250 (3)
H110.36940.20800.51560.030*
C120.60341 (13)0.17605 (12)0.49672 (5)0.0248 (3)
H120.58660.09350.47510.030*
C130.22263 (13)0.38888 (13)0.57144 (6)0.0292 (3)
H13A0.19320.38670.52680.035*
H13B0.14970.44850.59330.035*
H13C0.21600.29780.58880.035*
C140.79638 (13)0.02957 (12)0.26809 (6)0.0263 (3)
H14A0.75760.01530.22930.032*
H14B0.70270.06560.28950.032*
C150.90264 (13)0.14602 (11)0.25073 (5)0.0224 (2)
C160.97928 (13)0.22551 (12)0.29611 (5)0.0236 (3)
H160.96860.20360.33900.028*
C171.06997 (13)0.33503 (12)0.28015 (5)0.0243 (3)
H171.12120.38760.31180.029*
C181.08652 (13)0.36866 (11)0.21741 (5)0.0224 (2)
C191.01334 (13)0.28976 (12)0.17146 (5)0.0251 (3)
H191.02550.31070.12860.030*
C200.92206 (13)0.17982 (12)0.18864 (5)0.0249 (3)
H200.87170.12650.15700.030*
C211.18686 (15)0.52057 (13)0.14183 (5)0.0324 (3)
H21A1.07980.53590.12410.039*
H21B1.24890.60380.13930.039*
H21C1.23910.44930.11830.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0372 (5)0.0225 (5)0.0387 (5)0.0028 (4)0.0125 (4)0.0013 (4)
O20.0361 (5)0.0325 (5)0.0360 (5)0.0066 (4)0.0008 (4)0.0107 (4)
O30.0232 (4)0.0286 (5)0.0256 (4)0.0020 (3)0.0020 (3)0.0037 (3)
O40.0340 (5)0.0237 (5)0.0280 (4)0.0067 (4)0.0025 (3)0.0041 (3)
N10.0242 (5)0.0204 (5)0.0259 (5)0.0032 (4)0.0031 (4)0.0023 (4)
N20.0226 (5)0.0181 (5)0.0287 (5)0.0000 (4)0.0040 (4)0.0044 (4)
C10.0224 (6)0.0187 (6)0.0322 (6)0.0036 (5)0.0054 (5)0.0008 (5)
C20.0213 (6)0.0224 (6)0.0334 (6)0.0026 (5)0.0004 (5)0.0041 (5)
C30.0240 (6)0.0204 (6)0.0328 (6)0.0003 (5)0.0053 (5)0.0014 (5)
C40.0197 (6)0.0202 (6)0.0305 (6)0.0034 (5)0.0037 (4)0.0000 (5)
C50.0354 (7)0.0269 (7)0.0292 (6)0.0024 (5)0.0058 (5)0.0024 (5)
C60.0286 (6)0.0266 (7)0.0274 (6)0.0056 (5)0.0003 (5)0.0015 (5)
C70.0267 (6)0.0223 (6)0.0197 (5)0.0022 (5)0.0012 (4)0.0043 (4)
C80.0225 (6)0.0276 (7)0.0229 (6)0.0012 (5)0.0011 (4)0.0016 (5)
C90.0285 (6)0.0222 (6)0.0212 (6)0.0012 (5)0.0009 (4)0.0016 (4)
C100.0252 (6)0.0232 (6)0.0158 (5)0.0029 (5)0.0022 (4)0.0025 (4)
C110.0238 (6)0.0279 (7)0.0233 (6)0.0039 (5)0.0012 (4)0.0000 (5)
C120.0317 (6)0.0214 (6)0.0214 (5)0.0007 (5)0.0024 (5)0.0005 (5)
C130.0234 (6)0.0330 (7)0.0316 (6)0.0002 (5)0.0049 (5)0.0002 (5)
C140.0236 (6)0.0220 (6)0.0334 (6)0.0016 (5)0.0003 (5)0.0049 (5)
C150.0196 (6)0.0174 (6)0.0303 (6)0.0033 (4)0.0022 (4)0.0034 (5)
C160.0257 (6)0.0228 (6)0.0225 (5)0.0043 (5)0.0036 (4)0.0023 (5)
C170.0264 (6)0.0226 (6)0.0237 (6)0.0017 (5)0.0008 (4)0.0015 (5)
C180.0223 (6)0.0173 (6)0.0277 (6)0.0022 (5)0.0027 (4)0.0023 (5)
C190.0301 (6)0.0234 (6)0.0217 (6)0.0025 (5)0.0010 (4)0.0031 (5)
C200.0278 (6)0.0209 (6)0.0260 (6)0.0004 (5)0.0029 (4)0.0016 (5)
C210.0394 (7)0.0273 (7)0.0309 (7)0.0042 (6)0.0067 (5)0.0069 (5)
Geometric parameters (Å, º) top
O1—C11.2220 (13)C9—C101.3922 (15)
O2—C21.2276 (14)C9—H90.9500
O3—C101.3677 (13)C10—C111.3886 (16)
O3—C131.4288 (13)C11—C121.3929 (15)
O4—C181.3723 (13)C11—H110.9500
O4—C211.4292 (14)C12—H120.9500
N1—C11.3848 (15)C13—H13A0.9800
N1—C21.4070 (15)C13—H13B0.9800
N1—C61.4853 (14)C13—H13C0.9800
N2—C41.3838 (14)C14—C151.5142 (15)
N2—C11.3904 (14)C14—H14A0.9900
N2—C141.4803 (14)C14—H14B0.9900
C2—C31.4290 (15)C15—C201.3850 (15)
C3—C41.3444 (16)C15—C161.3954 (16)
C3—H30.9500C16—C171.3770 (16)
C4—C51.4914 (15)C16—H160.9500
C5—H5A0.9800C17—C181.3949 (15)
C5—H5B0.9800C17—H170.9500
C5—H5C0.9800C18—C191.3879 (16)
C6—C71.5108 (15)C19—C201.3901 (16)
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—H200.9500
C7—C121.3850 (15)C21—H21A0.9800
C7—C81.3946 (16)C21—H21B0.9800
C8—C91.3814 (15)C21—H21C0.9800
C8—H80.9500
C10—O3—C13116.79 (9)C11—C10—C9120.04 (10)
C18—O4—C21116.59 (9)C10—C11—C12119.15 (11)
C1—N1—C2124.87 (9)C10—C11—H11120.4
C1—N1—C6117.30 (9)C12—C11—H11120.4
C2—N1—C6117.78 (9)C7—C12—C11121.40 (11)
C4—N2—C1121.75 (9)C7—C12—H12119.3
C4—N2—C14121.65 (9)C11—C12—H12119.3
C1—N2—C14116.56 (9)O3—C13—H13A109.5
O1—C1—N1122.15 (11)O3—C13—H13B109.5
O1—C1—N2121.67 (10)H13A—C13—H13B109.5
N1—C1—N2116.18 (10)O3—C13—H13C109.5
O2—C2—N1119.80 (10)H13A—C13—H13C109.5
O2—C2—C3125.52 (11)H13B—C13—H13C109.5
N1—C2—C3114.68 (10)N2—C14—C15114.07 (9)
C4—C3—C2121.90 (11)N2—C14—H14A108.7
C4—C3—H3119.0C15—C14—H14A108.7
C2—C3—H3119.0N2—C14—H14B108.7
C3—C4—N2120.60 (10)C15—C14—H14B108.7
C3—C4—C5121.37 (11)H14A—C14—H14B107.6
N2—C4—C5118.03 (10)C20—C15—C16117.80 (10)
C4—C5—H5A109.5C20—C15—C14120.46 (10)
C4—C5—H5B109.5C16—C15—C14121.70 (10)
H5A—C5—H5B109.5C17—C16—C15121.49 (10)
C4—C5—H5C109.5C17—C16—H16119.3
H5A—C5—H5C109.5C15—C16—H16119.3
H5B—C5—H5C109.5C16—C17—C18119.94 (10)
N1—C6—C7114.63 (9)C16—C17—H17120.0
N1—C6—H6A108.6C18—C17—H17120.0
C7—C6—H6A108.6O4—C18—C19124.37 (10)
N1—C6—H6B108.6O4—C18—C17116.09 (10)
C7—C6—H6B108.6C19—C18—C17119.54 (10)
H6A—C6—H6B107.6C18—C19—C20119.54 (10)
C12—C7—C8118.64 (10)C18—C19—H19120.2
C12—C7—C6120.28 (11)C20—C19—H19120.2
C8—C7—C6121.04 (10)C15—C20—C19121.68 (10)
C9—C8—C7120.71 (11)C15—C20—H20119.2
C9—C8—H8119.6C19—C20—H20119.2
C7—C8—H8119.6O4—C21—H21A109.5
C8—C9—C10120.06 (11)O4—C21—H21B109.5
C8—C9—H9120.0H21A—C21—H21B109.5
C10—C9—H9120.0O4—C21—H21C109.5
O3—C10—C11124.45 (10)H21A—C21—H21C109.5
O3—C10—C9115.51 (10)H21B—C21—H21C109.5
C2—N1—C1—O1179.48 (10)C7—C8—C9—C100.49 (16)
C6—N1—C1—O12.11 (16)C13—O3—C10—C111.51 (15)
C2—N1—C1—N20.05 (15)C13—O3—C10—C9178.71 (9)
C6—N1—C1—N2177.43 (9)C8—C9—C10—O3179.95 (9)
C4—N2—C1—O1178.01 (10)C8—C9—C10—C110.15 (16)
C14—N2—C1—O14.12 (15)O3—C10—C11—C12179.39 (10)
C4—N2—C1—N11.53 (15)C9—C10—C11—C120.38 (16)
C14—N2—C1—N1176.34 (9)C8—C7—C12—C110.28 (16)
C1—N1—C2—O2179.50 (10)C6—C7—C12—C11177.94 (10)
C6—N1—C2—O23.13 (15)C10—C11—C12—C70.60 (16)
C1—N1—C2—C31.11 (15)C4—N2—C14—C1584.38 (13)
C6—N1—C2—C3176.25 (9)C1—N2—C14—C1597.75 (11)
O2—C2—C3—C4179.76 (12)N2—C14—C15—C20126.06 (11)
N1—C2—C3—C40.89 (16)N2—C14—C15—C1656.27 (14)
C2—C3—C4—N20.48 (17)C20—C15—C16—C170.72 (16)
C2—C3—C4—C5179.79 (10)C14—C15—C16—C17177.00 (10)
C1—N2—C4—C31.78 (16)C15—C16—C17—C180.11 (16)
C14—N2—C4—C3175.98 (10)C21—O4—C18—C193.25 (15)
C1—N2—C4—C5178.48 (10)C21—O4—C18—C17176.61 (10)
C14—N2—C4—C53.75 (15)C16—C17—C18—O4178.78 (9)
C1—N1—C6—C795.32 (12)C16—C17—C18—C191.09 (16)
C2—N1—C6—C787.11 (12)O4—C18—C19—C20178.63 (10)
N1—C6—C7—C1278.75 (13)C17—C18—C19—C201.22 (16)
N1—C6—C7—C8103.65 (12)C16—C15—C20—C190.58 (16)
C12—C7—C8—C90.27 (16)C14—C15—C20—C19177.17 (10)
C6—C7—C8—C9177.37 (10)C18—C19—C20—C150.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O3i0.952.513.3627 (14)150
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H22N2O4
Mr366.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.4133 (9), 9.929 (1), 21.407 (3)
β (°) 91.614 (4)
V3)1787.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2009)
Tmin, Tmax0.976, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17394, 4250, 3035
Rint0.037
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 0.98
No. of reflections4250
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.16

Computer programs: CrystalClear (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O3i0.952.513.3627 (14)150.1
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents at the University of Henan Province (No. 2005HANCET-17), the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.  Google Scholar
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationRigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSelby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74–84. Washington DC: American Chemical Society.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F.-L. & Li, G.-C. (2006). Acta Cryst. E62, o3405–o3406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-Q., Zou, X.-M., Li, G.-C., Yao, C.-S. & Yang, H.-Z. (2007). Chin. J. Org. Chem. 27, 753–757.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds