metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m300-m301

Monomers, dimers, and trimers of [Au(CN)2] in a Ba(di­aza-18-crown-6)2+ coordination polymer

aDepartment of Chemistry, University of California, Davis, CA 95656, USA
*Correspondence e-mail: mmolmstead@ucdavis.edu

(Received 6 February 2009; accepted 13 February 2009; online 21 February 2009)

The structure of the title compound, poly[triaquatetra-μ-cyanido-tetracyanidobis­(1,4,10,13-tetra­oxa-7,16-diaza­cyclo­octa­deca­ne)di­barium(II)tetra­gold(I)], [Au4Ba2(CN)8(C12H26N2O4)2(H2O)3]n, displays O—H⋯N hydrogen bonding between water molecules and cyano ligands and an unusual pattern of aurophilic inter­actions that yields a monomer, dimer, and trimer of [Au(CN)2] within the same crystal structure. In two of the five Au positions, the atom resides on a center of inversion. The overall arrangement is that of a coordination polymer assisted by aurophilic and hydrogen-bonded inter­actions.

Related literature

For aurophilic inter­actions, see: Anderson et al. (2007[Anderson, K. M., Goeta, A. E. & Steed, J. W. (2007). Inorg. Chem. 46, 6444-6451.]); Schmidbaur (1995[Schmidbaur, H. (1995). Chem. Soc. Rev. 24, 391-400.]); Pathaneni & Desiraju (1993[Pathaneni, S. S. & Desiraju, G. R. (1993). J. Chem. Soc. Dalton Trans. pp. 319-322.]). For the structure of a related Pt(CN)42− salt, see: Olmstead et al. (2005[Olmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048-m1050.]).

[Scheme 1]

Experimental

Crystal data
  • [Au4Ba2(CN)8(C12H26N2O4)2(H2O)3]

  • Mr = 1849.45

  • Triclinic, [P \overline 1]

  • a = 11.0962 (3) Å

  • b = 15.9223 (5) Å

  • c = 16.5480 (5) Å

  • α = 64.142 (2)°

  • β = 70.523 (2)°

  • γ = 79.027 (3)°

  • V = 2476.90 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.43 mm−1

  • T = 90 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.174, Tmax = 0.296 (expected range = 0.117–0.200)

  • 46665 measured reflections

  • 15056 independent reflections

  • 13234 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.041

  • S = 1.03

  • 15056 reflections

  • 585 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ba1—N1 2.959 (2)
Ba1—N2 2.919 (2)
Ba1—N5 2.889 (3)
Ba1—N6 2.877 (3)
Ba1—O1 2.854 (2)
Ba1—O2 2.827 (2)
Ba1—O3 2.802 (2)
Ba1—O4 2.850 (2)
Ba1—O5 2.764 (2)
Ba2—N9 2.939 (3)
Ba2—N10 2.867 (3)
Ba2—N11 2.929 (3)
Ba2—N12 2.867 (3)
Ba2—O6 2.888 (2)
Ba2—O7 2.884 (2)
Ba2—O8 2.888 (2)
Ba2—O9 2.929 (2)
Ba2—O10 2.859 (2)
Ba2—O11 2.761 (2)
Au1—Au2 3.5655 (2)
Au1—C13 1.978 (3)
Au1—C14 1.991 (3)
Au2—C15 1.986 (3)
Au3—C16 1.985 (3)
Au3—C17 1.990 (3)
Au3—Au4 3.2670 (2)
Au4—C18 1.988 (3)
Au4—C19 1.989 (3)
Au5—C32 1.985 (3)
C13—Au1—C14 177.12 (14)
C16—Au3—C17 177.40 (13)
C18—Au4—C19 176.60 (12)
C14—Au1—Au2—C15 53.73 (13)
C13—Au1—Au2—C15 −127.71 (13)
C14—Au1—Au2—C15i −126.27 (13)
C13—Au1—Au2—C15i 52.29 (13)
C16—Au3—Au4—C18 −125.59 (12)
C17—Au3—Au4—C18 54.37 (13)
C16—Au3—Au4—C19 55.81 (12)
C17—Au3—Au4—C19 −124.22 (13)
Symmetry code: (i) -x+2, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯N4i 0.84 (3) 2.19 (2) 2.997 (4) 161 (4)
O5—H5D⋯N3ii 0.84 (3) 1.98 (3) 2.804 (4) 168 (3)
O10—H10C⋯N8iii 0.83 (4) 2.09 (3) 2.916 (3) 170 (3)
O10—H10D⋯N6 0.84 (4) 2.35 (2) 3.132 (3) 156 (3)
O11—H11C⋯N4iv 0.84 (4) 2.01 (3) 2.845 (4) 177 (3)
O11—H11D⋯N7v 0.84 (3) 2.09 (3) 2.920 (4) 176 (4)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+2; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Two coordinate gold(I) compounds often associate through aurophilic interactions that span the range of ca 2.9 - 3.6 Å (Pathaneni & Desiraju, 1993; Schmidbaur, 1995; Anderson et al., 2007). In previous work (Olmstead et al., 2005) we reported a coordination polymer of Ba(18-crown-6)[Pt(CN)4].2H2O. The title compound represents an extension of that work to the [Au(CN)2]- anion, using a diaza-18-crown-6 to complex Ba2+. A related coordination polymer with aurophilic association between gold(I) species is the result.

The asymmetric unit of the title compound consists of two Ba(diaza-18-crown-6)2+ cations, four dicyanidoaurate anions, and three molecules of water (Fig. 1). There are five gold positions, two of which, Au2 and Au5, are located on centers of inversion. The monomeric dicyanidoaurate is comprised of Au5, linearly coordinated to two cyanide groups. It functions as a linker anion between two Ba2 complexes via N12 of its cyanide group (Fig. 2). It does not participate in any hydrogen bonding nor aurophilic interactions. The closest dicyanidoaurate is that of Au4, at an Au···Au distance of 4.4501 (2) Å. The Au1 and Au2 atoms are involved in the trimer while Au3 and Au4 form the dimer. Distances and angles are reported in Table 1. As shown in Fig. 2, the polymer is connected through a combination of coordination of the [Au(CN)2]- nitrogen atoms to barium and aurophilic interactions. All of the hydrogen atoms of the three coordinated waters behave as hydrogen bond donors to N3, N4, N6, N7 and N8 of the cyanide groups (see Table 2). Fig. 3 depicts how a portion of the polymeric structure is supported by these hydrogen bonds.

The bariums, Ba1 and Ba2, have coordination numbers of 9 and 10, respectively. Ba1 is six-coordinated by the diaza-18-crown-6, two [Au(CN)2]- anions and one water molecule. It is 0.56 (2) Å out of the N2O4 plane of the crown, giving endo and exo faces. One dicyanidoaurate is coordinated to each face while the water molecule coordinates on the exo face. The coordination environment of Ba2 is different. Ba2, which is 0.71 (2) Å out of the N2O4 plane of the crown, is also coordinated by two dicyanidoaurates, but both are found on the exo face. Two water molecules are coordinated to Ba2, one on each face. Four of the eight independent cyanide groups are coordinated through their cyanide N atom to a barium (N5, N6, N9, N12). Interestingly, even though the dimer and trimer differ in their Au···Au distances, they show similar C-Au-Au-C torsion angles that are intermediate between eclipsed and staggered. The average value of the two smaller angles is 53° for the trimer and 55° for the dimer (see Table 1 for details).

Related literature top

For aurophilic interactions, see: Anderson et al. (2007); Schmidbaur (1995); Pathaneni & Desiraju (1993). For the structure of a related Pt(CN)42+ salt, see: Olmstead et al. (2005).

Experimental top

A salt of Ba[Au(CN)2]2 was prepared by mixing 162 mg (0.62 mmol) Ba(NO3)2 and 288 mg (1.0 mmol) K[Au(CN)2] in water and heating until both compounds were dissolved. The solution was then put in an ice bath to precipitate out Ba[Au(CN)2]2. An excess of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (diaza-18-crown-6), 400 mg (1.5 mmol) was dissolved in methanol and added to the precipitated material. This solution was placed in a 5 mm diameter glass tube and layered with water. After 24 h, suitable prismatic crystals formed.

Refinement top

Hydrogen atoms on water and aza-N atoms were located in a difference map and subsequently refined with Uiso = 1.2Ueq(N or O) and distance restraints of 0.84 (1) Å for O—H, 0.88 Å for N—H and H···H of 1.32 (3) Å for water. The C—H geometry was determined by a riding model with idealized geometry and a C—H distance of 0.99 Å. The largest difference map peaks are due to a small amount of conformational disorder in one of the aza crown rings but this was not modeled. The disorder is reflected in somewhat elongated thermal ellipsoids in the cation involving Ba2.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit of the title compound. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view that shows how the coordination polymer and the aurophilic interactions are propagated in the title compound. Symmetry codes: (') 2 - x, 1 - y, 2 - z; (") 2 - x, -y, 2 - z; ('") x, 1 + y, z.
[Figure 3] Fig. 3. A portion of the hydrogen bonding that occurs between aqua groups and cyanide groups. Symmetry codes: (") 2 - x, -y, 2 - z; (#) 1 - x, -y, 2 - z; (*) 1 - x, 1 - y, 2 - z.
poly[triaquatetra-µ-cyanido-tetracyanidobis(1,4,10,13-tetraoxa-7,16- diazacyclooctadecane)dibarium(II)tetragold(I)] top
Crystal data top
[Au4Ba2(CN)8(C12H26N2O4)2(H2O)3]Z = 2
Mr = 1849.45F(000) = 1700
Triclinic, P1Dx = 2.480 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.0962 (3) ÅCell parameters from 7386 reflections
b = 15.9223 (5) Åθ = 2.4–31.5°
c = 16.5480 (5) ŵ = 13.43 mm1
α = 64.142 (2)°T = 90 K
β = 70.523 (2)°Prism, colorless
γ = 79.027 (3)°0.20 × 0.15 × 0.12 mm
V = 2476.90 (13) Å3
Data collection top
Bruker SMART APEXII
diffractometer
15056 independent reflections
Radiation source: fine-focus sealed tube13234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3 pixels mm-1θmax = 30.5°, θmin = 2.0°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.174, Tmax = 0.296l = 2323
46665 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.01P)2 + 2.3943P]
where P = (Fo2 + 2Fc2)/3
15056 reflections(Δ/σ)max = 0.004
585 parametersΔρmax = 1.06 e Å3
13 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Au4Ba2(CN)8(C12H26N2O4)2(H2O)3]γ = 79.027 (3)°
Mr = 1849.45V = 2476.90 (13) Å3
Triclinic, P1Z = 2
a = 11.0962 (3) ÅMo Kα radiation
b = 15.9223 (5) ŵ = 13.43 mm1
c = 16.5480 (5) ÅT = 90 K
α = 64.142 (2)°0.20 × 0.15 × 0.12 mm
β = 70.523 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
15056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
13234 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.296Rint = 0.028
46665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02113 restraints
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.06 e Å3
15056 reflectionsΔρmin = 0.89 e Å3
585 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.755709 (15)0.334179 (12)0.759393 (11)0.01240 (3)
Ba20.742307 (15)0.821847 (11)0.765305 (11)0.01231 (3)
Au10.836864 (11)0.115019 (9)1.242169 (9)0.02120 (3)
Au21.00000.00001.00000.01559 (3)
Au30.551751 (11)0.686535 (8)0.561101 (8)0.01723 (3)
Au40.337214 (11)0.634372 (8)0.764727 (8)0.01702 (3)
Au51.00000.50001.00000.01710 (3)
O10.8799 (2)0.37038 (15)0.56699 (14)0.0192 (4)
O20.49357 (19)0.39306 (16)0.79701 (15)0.0212 (4)
O30.6317 (2)0.37402 (15)0.91746 (15)0.0196 (4)
O41.02624 (19)0.34617 (15)0.68338 (14)0.0178 (4)
O50.6461 (2)0.17261 (17)0.80175 (19)0.0304 (6)
H5C0.711 (2)0.141 (2)0.784 (3)0.036*
H5D0.585 (2)0.160 (3)0.791 (3)0.036*
O60.8761 (3)0.88170 (17)0.56832 (16)0.0346 (6)
O70.6071 (3)0.88026 (18)0.62624 (19)0.0385 (6)
O80.6167 (2)0.86170 (17)0.92912 (16)0.0312 (6)
O90.8862 (3)0.86207 (18)0.86293 (18)0.0361 (6)
O100.8497 (2)0.67323 (16)0.70570 (17)0.0226 (5)
H10C0.9171 (19)0.644 (2)0.717 (2)0.027*
H10D0.803 (3)0.6342 (18)0.711 (3)0.027*
O110.7417 (2)1.01450 (16)0.68894 (17)0.0241 (5)
H11C0.792 (3)1.042 (2)0.696 (2)0.029*
H11D0.711 (3)1.0566 (17)0.6479 (19)0.029*
N10.6063 (3)0.36039 (19)0.63095 (18)0.0200 (5)
H10.597 (4)0.3021 (10)0.644 (3)0.032 (11)*
N20.9045 (2)0.39262 (18)0.84017 (18)0.0181 (5)
H20.917 (3)0.4529 (9)0.812 (2)0.030 (10)*
N30.5818 (3)0.1406 (2)1.2162 (2)0.0325 (7)
N41.0905 (3)0.1036 (3)1.2788 (2)0.0372 (8)
N50.8290 (2)0.17401 (19)0.90908 (18)0.0203 (5)
N60.7368 (3)0.53453 (19)0.66500 (19)0.0221 (5)
N70.3765 (3)0.8392 (2)0.4486 (2)0.0298 (6)
N80.1005 (3)0.5907 (2)0.72896 (19)0.0249 (6)
N90.5559 (3)0.68713 (19)0.81265 (18)0.0216 (5)
N100.4887 (2)0.9078 (2)0.7923 (2)0.0276 (6)
H100.508 (3)0.9636 (12)0.779 (3)0.033*
N111.0211 (3)0.8329 (2)0.6984 (2)0.0293 (7)
H111.036 (4)0.7737 (9)0.712 (3)0.035*
N120.8064 (3)0.65633 (19)0.91243 (18)0.0217 (5)
C10.8104 (3)0.3508 (2)0.5183 (2)0.0245 (7)
H1D0.80240.28260.54300.029*
H1B0.85660.37340.45070.029*
C20.6811 (3)0.3991 (2)0.5322 (2)0.0250 (7)
H1C0.69000.46660.51120.030*
H2B0.63540.39180.49360.030*
C30.4815 (3)0.4099 (2)0.6491 (2)0.0252 (7)
H3A0.42720.39970.61760.030*
H3B0.49320.47780.62260.030*
C40.4152 (3)0.3767 (2)0.7524 (2)0.0253 (7)
H4A0.33090.41080.76310.030*
H4B0.40090.30910.77920.030*
C50.4311 (3)0.3700 (2)0.8944 (2)0.0259 (7)
H5A0.43160.30130.92950.031*
H5B0.34100.39490.90320.031*
C60.5012 (3)0.4122 (2)0.9303 (2)0.0252 (7)
H6A0.49990.48100.89570.030*
H6B0.45900.39760.99760.030*
C70.7032 (3)0.4129 (2)0.9502 (2)0.0252 (7)
H7A0.66080.40121.01690.030*
H7B0.70710.48120.91340.030*
C80.8359 (3)0.3674 (2)0.9393 (2)0.0231 (7)
H8A0.88320.38780.96830.028*
H8B0.83090.29870.97190.028*
C91.0344 (3)0.3478 (2)0.8259 (2)0.0236 (7)
H9B1.02920.27900.85810.028*
H9C1.08490.36740.85340.028*
C101.1001 (3)0.3746 (2)0.7230 (2)0.0240 (7)
H10A1.10850.44310.69090.029*
H10B1.18700.34380.71420.029*
C111.0825 (3)0.3751 (2)0.5846 (2)0.0243 (7)
H11A1.17330.35200.57170.029*
H11B1.07930.44420.55350.029*
C121.0113 (3)0.3369 (2)0.5466 (2)0.0226 (6)
H12A1.04910.35760.47800.027*
H12B1.01730.26780.57570.027*
C130.9970 (3)0.1053 (2)1.2646 (2)0.0248 (7)
C140.6740 (3)0.1307 (2)1.2255 (2)0.0243 (7)
C150.8885 (3)0.1093 (2)0.9446 (2)0.0175 (6)
C160.6695 (3)0.5908 (2)0.6263 (2)0.0179 (6)
C170.4399 (3)0.7836 (2)0.4903 (2)0.0217 (6)
C180.1896 (3)0.6048 (2)0.7407 (2)0.0204 (6)
C190.4775 (3)0.6657 (2)0.7950 (2)0.0188 (6)
C200.8099 (5)0.8607 (3)0.5204 (3)0.0476 (12)
H20A0.79890.79260.54790.057*
H20B0.85900.87990.45350.057*
C210.6840 (5)0.9118 (3)0.5291 (3)0.0479 (12)
H21A0.69600.97960.50380.058*
H21B0.63850.90210.49180.058*
C220.4890 (4)0.9331 (3)0.6355 (3)0.0411 (10)
H22A0.43890.92430.60040.049*
H22B0.50521.00030.60850.049*
C230.4141 (3)0.9032 (3)0.7363 (3)0.0441 (11)
H23A0.33520.94410.74190.053*
H23B0.38850.83840.76090.053*
C240.4193 (4)0.8799 (3)0.8896 (3)0.0449 (11)
H24A0.41070.81150.91940.054*
H24B0.33240.91070.89580.054*
C250.4878 (4)0.9064 (3)0.9372 (3)0.0449 (12)
H25A0.49340.97520.90870.054*
H25B0.43950.88731.00410.054*
C260.6879 (5)0.8926 (3)0.9667 (3)0.0441 (11)
H26A0.64190.88061.03290.053*
H26B0.69840.96070.93140.053*
C270.8161 (4)0.8417 (3)0.9603 (3)0.0430 (11)
H27A0.86510.86090.98910.052*
H27B0.80530.77360.99510.052*
C281.0160 (4)0.8261 (3)0.8502 (3)0.0439 (11)
H28A1.01890.75690.87890.053*
H28B1.05920.84750.88080.053*
C291.0828 (3)0.8602 (3)0.7471 (3)0.0453 (11)
H29A1.08410.92920.72000.054*
H29B1.17250.83460.73780.054*
C301.0738 (4)0.8775 (3)0.5983 (3)0.0507 (13)
H30A1.16650.86040.58110.061*
H30B1.06320.94620.57810.061*
C311.0091 (4)0.8489 (3)0.5484 (3)0.0485 (12)
H31A1.05090.87660.48010.058*
H31B1.01570.78010.57010.058*
C320.8760 (3)0.5980 (2)0.9448 (2)0.0186 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01125 (7)0.01328 (8)0.01126 (7)0.00179 (6)0.00387 (6)0.00274 (6)
Ba20.01208 (7)0.01168 (8)0.01154 (7)0.00047 (6)0.00365 (6)0.00308 (6)
Au10.02148 (6)0.02113 (6)0.02549 (6)0.00010 (5)0.00862 (5)0.01244 (5)
Au20.01522 (7)0.01358 (7)0.01744 (7)0.00157 (6)0.00750 (6)0.00462 (6)
Au30.01753 (5)0.01549 (6)0.01742 (5)0.00105 (4)0.00516 (4)0.00528 (4)
Au40.01769 (5)0.01667 (6)0.01733 (5)0.00038 (4)0.00625 (4)0.00666 (4)
Au50.01969 (8)0.01373 (8)0.01890 (8)0.00225 (6)0.01073 (6)0.00489 (6)
O10.0210 (11)0.0224 (12)0.0160 (10)0.0025 (9)0.0038 (8)0.0099 (9)
O20.0146 (10)0.0233 (12)0.0211 (11)0.0044 (9)0.0029 (8)0.0050 (9)
O30.0197 (11)0.0173 (11)0.0204 (11)0.0014 (8)0.0026 (9)0.0096 (9)
O40.0138 (10)0.0186 (11)0.0186 (10)0.0028 (8)0.0028 (8)0.0057 (9)
O50.0321 (14)0.0211 (13)0.0455 (16)0.0010 (11)0.0217 (12)0.0133 (12)
O60.0570 (17)0.0228 (13)0.0167 (12)0.0110 (12)0.0039 (11)0.0085 (10)
O70.0507 (17)0.0250 (14)0.0415 (16)0.0065 (12)0.0318 (14)0.0006 (12)
O80.0482 (16)0.0201 (12)0.0181 (12)0.0000 (11)0.0005 (11)0.0083 (10)
O90.0453 (16)0.0313 (15)0.0348 (14)0.0091 (12)0.0259 (13)0.0028 (12)
O100.0205 (11)0.0212 (12)0.0301 (12)0.0005 (9)0.0100 (10)0.0121 (10)
O110.0274 (12)0.0167 (12)0.0290 (13)0.0023 (9)0.0157 (10)0.0038 (10)
N10.0242 (13)0.0149 (13)0.0211 (13)0.0020 (11)0.0116 (11)0.0033 (11)
N20.0242 (13)0.0143 (13)0.0168 (12)0.0027 (10)0.0090 (10)0.0041 (10)
N30.0294 (16)0.0315 (17)0.0419 (19)0.0025 (13)0.0157 (14)0.0171 (15)
N40.0334 (17)0.053 (2)0.0303 (17)0.0164 (15)0.0080 (14)0.0169 (16)
N50.0198 (13)0.0196 (14)0.0206 (13)0.0001 (10)0.0064 (11)0.0071 (11)
N60.0242 (14)0.0173 (13)0.0232 (14)0.0034 (11)0.0046 (11)0.0075 (11)
N70.0289 (15)0.0247 (16)0.0292 (16)0.0028 (12)0.0103 (13)0.0029 (13)
N80.0240 (14)0.0292 (16)0.0251 (14)0.0018 (12)0.0080 (12)0.0145 (13)
N90.0240 (13)0.0176 (13)0.0198 (13)0.0013 (11)0.0081 (11)0.0033 (11)
N100.0115 (12)0.0229 (15)0.0368 (17)0.0031 (11)0.0001 (11)0.0059 (13)
N110.0139 (13)0.0155 (14)0.0452 (18)0.0019 (11)0.0018 (12)0.0047 (13)
N120.0233 (13)0.0185 (14)0.0213 (13)0.0015 (11)0.0060 (11)0.0062 (11)
C10.0352 (18)0.0253 (17)0.0186 (15)0.0042 (14)0.0113 (14)0.0100 (13)
C20.0350 (18)0.0220 (17)0.0221 (16)0.0047 (14)0.0163 (14)0.0053 (13)
C30.0243 (16)0.0192 (16)0.0372 (19)0.0004 (13)0.0207 (15)0.0078 (14)
C40.0152 (14)0.0203 (16)0.040 (2)0.0004 (12)0.0115 (14)0.0100 (15)
C50.0182 (15)0.0244 (17)0.0198 (16)0.0035 (13)0.0032 (12)0.0006 (13)
C60.0243 (16)0.0229 (17)0.0210 (16)0.0068 (13)0.0030 (13)0.0079 (14)
C70.0357 (18)0.0237 (17)0.0198 (16)0.0030 (14)0.0058 (14)0.0128 (14)
C80.0327 (17)0.0239 (17)0.0176 (15)0.0064 (14)0.0091 (13)0.0094 (13)
C90.0222 (16)0.0237 (17)0.0256 (17)0.0095 (13)0.0098 (13)0.0049 (14)
C100.0152 (14)0.0251 (17)0.0313 (18)0.0070 (12)0.0064 (13)0.0087 (14)
C110.0153 (14)0.0285 (18)0.0197 (16)0.0054 (13)0.0036 (12)0.0058 (14)
C120.0253 (16)0.0215 (16)0.0177 (15)0.0008 (13)0.0003 (12)0.0099 (13)
C130.0278 (17)0.0277 (18)0.0198 (16)0.0079 (14)0.0042 (13)0.0096 (14)
C140.0296 (17)0.0190 (16)0.0306 (18)0.0036 (13)0.0137 (14)0.0139 (14)
C150.0165 (14)0.0162 (15)0.0181 (14)0.0011 (11)0.0050 (11)0.0052 (12)
C160.0195 (14)0.0155 (15)0.0189 (14)0.0038 (11)0.0024 (12)0.0081 (12)
C170.0187 (15)0.0221 (16)0.0202 (15)0.0026 (12)0.0040 (12)0.0054 (13)
C180.0217 (15)0.0193 (16)0.0214 (15)0.0036 (12)0.0083 (12)0.0095 (13)
C190.0228 (15)0.0173 (15)0.0136 (14)0.0019 (12)0.0051 (12)0.0035 (12)
C200.095 (4)0.029 (2)0.0180 (18)0.012 (2)0.013 (2)0.0068 (16)
C210.102 (4)0.027 (2)0.0231 (19)0.023 (2)0.035 (2)0.0036 (16)
C220.048 (2)0.0212 (19)0.061 (3)0.0042 (17)0.041 (2)0.0035 (18)
C230.0218 (18)0.0214 (19)0.096 (4)0.0069 (15)0.032 (2)0.022 (2)
C240.0221 (18)0.031 (2)0.049 (3)0.0013 (16)0.0132 (17)0.0044 (19)
C250.052 (3)0.0237 (19)0.0247 (19)0.0129 (18)0.0159 (17)0.0049 (16)
C260.090 (3)0.025 (2)0.0240 (19)0.003 (2)0.021 (2)0.0123 (16)
C270.085 (3)0.029 (2)0.0265 (19)0.019 (2)0.034 (2)0.0020 (16)
C280.045 (2)0.025 (2)0.068 (3)0.0060 (17)0.042 (2)0.004 (2)
C290.0190 (17)0.026 (2)0.090 (4)0.0009 (15)0.021 (2)0.020 (2)
C300.029 (2)0.033 (2)0.071 (3)0.0104 (17)0.023 (2)0.027 (2)
C310.057 (3)0.029 (2)0.035 (2)0.0129 (19)0.0285 (19)0.0169 (18)
C320.0224 (15)0.0163 (15)0.0167 (14)0.0014 (12)0.0069 (12)0.0051 (12)
Geometric parameters (Å, º) top
Ba1—N12.959 (2)N10—C231.463 (5)
Ba1—N22.919 (2)N10—H100.87 (3)
Ba1—N52.889 (3)N11—C301.441 (5)
Ba1—N62.877 (3)N11—C291.447 (5)
Ba1—O12.854 (2)N11—H110.87 (3)
Ba1—O22.827 (2)N12—C321.147 (4)
Ba1—O32.802 (2)C1—C21.489 (5)
Ba1—O42.850 (2)C1—H1D0.9900
Ba1—O52.764 (2)C1—H1B0.9900
Ba2—N92.939 (3)C2—H1C0.9900
Ba2—N102.867 (3)C2—H2B0.9900
Ba2—N112.929 (3)C3—C41.505 (5)
Ba2—N122.867 (3)C3—H3A0.9900
Ba2—O62.888 (2)C3—H3B0.9900
Ba2—O72.884 (2)C4—H4A0.9900
Ba2—O82.888 (2)C4—H4B0.9900
Ba2—O92.929 (2)C5—C61.505 (5)
Ba2—O102.859 (2)C5—H5A0.9900
Ba2—O112.761 (2)C5—H5B0.9900
Au1—Au23.5655 (2)C6—H6A0.9900
Au1—C131.978 (3)C6—H6B0.9900
Au1—C141.991 (3)C7—C81.502 (5)
Au2—C15i1.986 (3)C7—H7A0.9900
Au2—C151.986 (3)C7—H7B0.9900
Au3—C161.985 (3)C8—H8A0.9900
Au3—C171.990 (3)C8—H8B0.9900
Au3—Au43.2670 (2)C9—C101.506 (4)
Au4—C181.988 (3)C9—H9B0.9900
Au4—C191.989 (3)C9—H9C0.9900
Au5—C32ii1.985 (3)C10—H10A0.9900
Au5—C321.985 (3)C10—H10B0.9900
O1—C121.434 (4)C11—C121.495 (4)
O1—C11.438 (3)C11—H11A0.9900
O2—C51.432 (4)C11—H11B0.9900
O2—C41.432 (4)C12—H12A0.9900
O3—C71.440 (4)C12—H12B0.9900
O3—C61.443 (4)C20—C211.474 (6)
O4—C111.431 (4)C20—H20A0.9900
O4—C101.437 (3)C20—H20B0.9900
O5—H5C0.84 (3)C21—H21A0.9900
O5—H5D0.83 (3)C21—H21B0.9900
O6—C201.413 (5)C22—C231.494 (6)
O6—C311.447 (5)C22—H22A0.9900
O7—C221.417 (5)C22—H22B0.9900
O7—C211.452 (5)C23—H23A0.9900
O8—C261.412 (5)C23—H23B0.9900
O8—C251.462 (5)C24—C251.478 (6)
O9—C281.427 (5)C24—H24A0.9900
O9—C271.453 (5)C24—H24B0.9900
O10—H10C0.83 (4)C25—H25A0.9900
O10—H10D0.84 (4)C25—H25B0.9900
O11—H11C0.84 (4)C26—C271.492 (6)
O11—H11D0.84 (3)C26—H26A0.9900
N1—C31.464 (4)C26—H26B0.9900
N1—C21.467 (4)C27—H27A0.9900
N1—H10.88 (3)C27—H27B0.9900
N2—C81.463 (4)C28—C291.501 (6)
N2—C91.473 (4)C28—H28A0.9900
N2—H20.88 (3)C28—H28B0.9900
N3—C141.134 (4)C29—H29A0.9900
N4—C131.145 (4)C29—H29B0.9900
N5—C151.147 (4)C30—C311.500 (6)
N6—C161.155 (4)C30—H30A0.9900
N7—C171.145 (4)C30—H30B0.9900
N8—C181.147 (4)C31—H31A0.9900
N9—C191.152 (4)C31—H31B0.9900
N10—C241.437 (5)
O5—Ba1—O3102.83 (7)O1—C1—H1D110.0
O5—Ba1—O279.48 (7)C2—C1—H1D110.0
O3—Ba1—O259.26 (6)O1—C1—H1B110.0
O5—Ba1—O4119.33 (7)C2—C1—H1B110.0
O3—Ba1—O4119.43 (6)H1D—C1—H1B108.4
O2—Ba1—O4159.10 (6)N1—C2—C1111.0 (3)
O5—Ba1—O196.10 (7)N1—C2—H1C109.4
O3—Ba1—O1157.80 (6)C1—C2—H1C109.4
O2—Ba1—O1114.11 (6)N1—C2—H2B109.4
O4—Ba1—O158.19 (6)C1—C2—H2B109.4
O5—Ba1—N6143.22 (7)H1C—C2—H2B108.0
O3—Ba1—N682.11 (7)N1—C3—C4111.3 (3)
O2—Ba1—N671.92 (7)N1—C3—H3A109.4
O4—Ba1—N687.18 (7)C4—C3—H3A109.4
O1—Ba1—N675.77 (7)N1—C3—H3B109.4
O5—Ba1—N566.95 (7)C4—C3—H3B109.4
O3—Ba1—N576.74 (7)H3A—C3—H3B108.0
O2—Ba1—N5115.92 (7)O2—C4—C3108.9 (2)
O4—Ba1—N581.94 (7)O2—C4—H4A109.9
O1—Ba1—N5122.06 (7)C3—C4—H4A109.9
N6—Ba1—N5147.29 (7)O2—C4—H4B109.9
O5—Ba1—N2136.59 (7)C3—C4—H4B109.9
O3—Ba1—N260.51 (7)H4A—C4—H4B108.3
O2—Ba1—N2114.90 (7)O2—C5—C6108.6 (3)
O4—Ba1—N258.94 (7)O2—C5—H5A110.0
O1—Ba1—N2111.94 (7)C6—C5—H5A110.0
N6—Ba1—N277.83 (7)O2—C5—H5B110.0
N5—Ba1—N270.12 (7)C6—C5—H5B110.0
O5—Ba1—N167.30 (7)H5A—C5—H5B108.3
O3—Ba1—N1118.09 (7)O3—C6—C5108.8 (3)
O2—Ba1—N158.85 (7)O3—C6—H6A109.9
O4—Ba1—N1117.43 (7)C5—C6—H6A109.9
O1—Ba1—N159.24 (7)O3—C6—H6B109.9
N6—Ba1—N178.16 (7)C5—C6—H6B109.9
N5—Ba1—N1134.01 (7)H6A—C6—H6B108.3
N2—Ba1—N1155.87 (7)O3—C7—C8108.5 (2)
O11—Ba2—O10137.70 (7)O3—C7—H7A110.0
O11—Ba2—N12143.24 (7)C8—C7—H7A110.0
O10—Ba2—N1267.64 (7)O3—C7—H7B110.0
O11—Ba2—N1067.46 (8)C8—C7—H7B110.0
O10—Ba2—N10131.20 (8)H7A—C7—H7B108.4
N12—Ba2—N10120.42 (8)N2—C8—C7110.5 (3)
O11—Ba2—O775.90 (7)N2—C8—H8A109.5
O10—Ba2—O784.97 (7)C7—C8—H8A109.5
N12—Ba2—O7140.41 (7)N2—C8—H8B109.5
N10—Ba2—O758.47 (9)C7—C8—H8B109.5
O11—Ba2—O878.61 (7)H8A—C8—H8B108.1
O10—Ba2—O8143.09 (7)N2—C9—C10110.5 (3)
N12—Ba2—O877.51 (7)N2—C9—H9B109.5
N10—Ba2—O858.82 (8)C10—C9—H9B109.5
O7—Ba2—O8117.22 (8)N2—C9—H9C109.5
O11—Ba2—O672.53 (7)C10—C9—H9C109.5
O10—Ba2—O665.32 (7)H9B—C9—H9C108.1
N12—Ba2—O6125.57 (8)O4—C10—C9109.3 (2)
N10—Ba2—O6110.74 (8)O4—C10—H10A109.8
O7—Ba2—O658.40 (8)C9—C10—H10A109.8
O8—Ba2—O6151.00 (7)O4—C10—H10B109.8
O11—Ba2—O975.86 (7)C9—C10—H10B109.8
O10—Ba2—O9115.52 (7)H10A—C10—H10B108.3
N12—Ba2—O967.84 (7)O4—C11—C12109.7 (3)
N10—Ba2—O9111.03 (8)O4—C11—H11A109.7
O7—Ba2—O9151.71 (7)C12—C11—H11A109.7
O8—Ba2—O958.02 (8)O4—C11—H11B109.7
O6—Ba2—O9110.70 (8)C12—C11—H11B109.7
O11—Ba2—N1184.00 (7)H11A—C11—H11B108.2
O10—Ba2—N1171.79 (7)O1—C12—C11108.6 (2)
N12—Ba2—N1181.66 (8)O1—C12—H12A110.0
N10—Ba2—N11151.42 (8)C11—C12—H12A110.0
O7—Ba2—N11117.33 (9)O1—C12—H12B110.0
O8—Ba2—N11115.65 (8)C11—C12—H12B110.0
O6—Ba2—N1158.97 (9)H12A—C12—H12B108.3
O9—Ba2—N1157.70 (9)N4—C13—Au1177.1 (3)
O11—Ba2—N9134.24 (7)N3—C14—Au1179.2 (3)
O10—Ba2—N966.20 (7)N5—C15—Au2176.8 (3)
N12—Ba2—N975.11 (7)N6—C16—Au3179.2 (3)
N10—Ba2—N970.20 (8)N7—C17—Au3179.1 (3)
O7—Ba2—N967.68 (7)N8—C18—Au4176.4 (3)
O8—Ba2—N993.98 (7)N9—C19—Au4177.2 (3)
O6—Ba2—N9108.12 (7)O6—C20—C21108.0 (3)
O9—Ba2—N9137.08 (7)O6—C20—H20A110.1
N11—Ba2—N9137.13 (8)C21—C20—H20A110.1
C13—Au1—C14177.12 (14)O6—C20—H20B110.1
C15i—Au2—C15179.999 (1)C21—C20—H20B110.1
C16—Au3—C17177.40 (13)H20A—C20—H20B108.4
C16—Au3—Au487.75 (9)O7—C21—C20111.0 (3)
C17—Au3—Au494.85 (9)O7—C21—H21A109.4
C18—Au4—C19176.60 (12)C20—C21—H21A109.4
C18—Au4—Au3101.99 (9)O7—C21—H21B109.4
C19—Au4—Au381.12 (8)C20—C21—H21B109.4
C32ii—Au5—C32179.998 (2)H21A—C21—H21B108.0
C12—O1—C1111.8 (2)O7—C22—C23110.4 (3)
C12—O1—Ba1115.33 (16)O7—C22—H22A109.6
C1—O1—Ba1116.57 (18)C23—C22—H22A109.6
C5—O2—C4111.7 (2)O7—C22—H22B109.6
C5—O2—Ba1113.39 (17)C23—C22—H22B109.6
C4—O2—Ba1119.24 (18)H22A—C22—H22B108.1
C7—O3—C6110.9 (2)N10—C23—C22111.5 (3)
C7—O3—Ba1118.93 (17)N10—C23—H23A109.3
C6—O3—Ba1119.53 (17)C22—C23—H23A109.3
C11—O4—C10110.8 (2)N10—C23—H23B109.3
C11—O4—Ba1119.65 (16)C22—C23—H23B109.3
C10—O4—Ba1121.32 (17)H23A—C23—H23B108.0
Ba1—O5—H5C101 (3)N10—C24—C25109.8 (3)
Ba1—O5—H5D136 (3)N10—C24—H24A109.7
H5C—O5—H5D107 (3)C25—C24—H24A109.7
C20—O6—C31111.5 (3)N10—C24—H24B109.7
C20—O6—Ba2111.6 (2)C25—C24—H24B109.7
C31—O6—Ba2114.4 (2)H24A—C24—H24B108.2
C22—O7—C21111.1 (3)O8—C25—C24110.8 (3)
C22—O7—Ba2120.4 (2)O8—C25—H25A109.5
C21—O7—Ba2116.8 (2)C24—C25—H25A109.5
C26—O8—C25111.7 (3)O8—C25—H25B109.5
C26—O8—Ba2120.0 (2)C24—C25—H25B109.5
C25—O8—Ba2117.8 (2)H25A—C25—H25B108.1
C28—O9—C27113.4 (3)O8—C26—C27109.3 (3)
C28—O9—Ba2115.4 (2)O8—C26—H26A109.8
C27—O9—Ba2112.4 (2)C27—C26—H26A109.8
Ba2—O10—H10C120 (2)O8—C26—H26B109.8
Ba2—O10—H10D121 (2)C27—C26—H26B109.8
H10C—O10—H10D106 (3)H26A—C26—H26B108.3
Ba2—O11—H11C121 (2)O9—C27—C26110.1 (3)
Ba2—O11—H11D134 (2)O9—C27—H27A109.6
H11C—O11—H11D104 (3)C26—C27—H27A109.6
C3—N1—C2112.9 (2)O9—C27—H27B109.6
C3—N1—Ba1114.07 (18)C26—C27—H27B109.6
C2—N1—Ba1112.68 (18)H27A—C27—H27B108.2
C3—N1—H1111 (2)O9—C28—C29108.8 (3)
C2—N1—H1105 (2)O9—C28—H28A109.9
Ba1—N1—H1100 (2)C29—C28—H28A109.9
C8—N2—C9112.6 (2)O9—C28—H28B109.9
C8—N2—Ba1107.68 (17)C29—C28—H28B109.9
C9—N2—Ba1109.42 (17)H28A—C28—H28B108.3
C8—N2—H2110 (2)N11—C29—C28112.2 (3)
C9—N2—H2104 (2)N11—C29—H29A109.2
Ba1—N2—H2113 (2)C28—C29—H29A109.2
C15—N5—Ba1158.4 (2)N11—C29—H29B109.2
C16—N6—Ba1137.8 (2)C28—C29—H29B109.2
C19—N9—Ba2149.6 (2)H29A—C29—H29B107.9
C24—N10—C23113.0 (3)N11—C30—C31111.3 (3)
C24—N10—Ba2112.3 (2)N11—C30—H30A109.4
C23—N10—Ba2115.7 (2)C31—C30—H30A109.4
C24—N10—H10100 (3)N11—C30—H30B109.4
C23—N10—H10116 (3)C31—C30—H30B109.4
Ba2—N10—H1098 (3)H30A—C30—H30B108.0
C30—N11—C29111.7 (3)O6—C31—C30108.3 (3)
C30—N11—Ba2115.4 (2)O6—C31—H31A110.0
C29—N11—Ba2118.3 (2)C30—C31—H31A110.0
C30—N11—H11105 (3)O6—C31—H31B110.0
C29—N11—H11110 (3)C30—C31—H31B110.0
Ba2—N11—H1195 (3)H31A—C31—H31B108.4
C32—N12—Ba2153.4 (2)N12—C32—Au5178.2 (3)
O1—C1—C2108.5 (2)
C14—Au1—Au2—C1553.73 (13)O3—Ba1—N1—C2141.49 (19)
C13—Au1—Au2—C15127.71 (13)O2—Ba1—N1—C2143.1 (2)
C14—Au1—Au2—C15i126.27 (13)O4—Ba1—N1—C213.3 (2)
C13—Au1—Au2—C15i52.29 (13)O1—Ba1—N1—C213.15 (19)
C16—Au3—Au4—C18125.59 (12)N6—Ba1—N1—C267.2 (2)
C17—Au3—Au4—C1854.37 (13)N5—Ba1—N1—C2119.6 (2)
C16—Au3—Au4—C1955.81 (12)N2—Ba1—N1—C261.5 (3)
C17—Au3—Au4—C19124.22 (13)O5—Ba1—N2—C851.2 (2)
O5—Ba1—O1—C1295.75 (19)O3—Ba1—N2—C825.70 (18)
O3—Ba1—O1—C12115.7 (2)O2—Ba1—N2—C850.2 (2)
O2—Ba1—O1—C12176.93 (18)O4—Ba1—N2—C8152.5 (2)
O4—Ba1—O1—C1225.14 (18)O1—Ba1—N2—C8177.53 (18)
N6—Ba1—O1—C12120.7 (2)N6—Ba1—N2—C8113.4 (2)
N5—Ba1—O1—C1229.2 (2)N5—Ba1—N2—C859.96 (19)
N2—Ba1—O1—C1250.4 (2)N1—Ba1—N2—C8119.2 (2)
N1—Ba1—O1—C12154.7 (2)O5—Ba1—N2—C971.4 (2)
O5—Ba1—O1—C138.4 (2)O3—Ba1—N2—C9148.3 (2)
O3—Ba1—O1—C1110.1 (2)O2—Ba1—N2—C9172.83 (17)
O2—Ba1—O1—C142.8 (2)O4—Ba1—N2—C929.84 (17)
O4—Ba1—O1—C1159.3 (2)O1—Ba1—N2—C954.9 (2)
N6—Ba1—O1—C1105.1 (2)N6—Ba1—N2—C9123.9 (2)
N5—Ba1—O1—C1104.9 (2)N5—Ba1—N2—C962.67 (19)
N2—Ba1—O1—C1175.44 (19)N1—Ba1—N2—C9118.2 (2)
N1—Ba1—O1—C120.59 (19)O5—Ba1—N5—C1592.1 (6)
O5—Ba1—O2—C584.9 (2)O3—Ba1—N5—C15157.5 (6)
O3—Ba1—O2—C527.02 (19)O2—Ba1—N5—C15156.8 (6)
O4—Ba1—O2—C5119.6 (2)O4—Ba1—N5—C1534.6 (6)
O1—Ba1—O2—C5176.92 (19)O1—Ba1—N5—C159.6 (7)
N6—Ba1—O2—C5118.5 (2)N6—Ba1—N5—C15106.4 (6)
N5—Ba1—O2—C527.1 (2)N2—Ba1—N5—C1594.4 (6)
N2—Ba1—O2—C551.9 (2)N1—Ba1—N5—C1586.0 (6)
N1—Ba1—O2—C5154.6 (2)O5—Ba1—N6—C164.4 (4)
O5—Ba1—O2—C449.8 (2)O3—Ba1—N6—C1696.5 (3)
O3—Ba1—O2—C4161.8 (2)O2—Ba1—N6—C1636.4 (3)
O4—Ba1—O2—C4105.7 (2)O4—Ba1—N6—C16143.2 (3)
O1—Ba1—O2—C442.2 (2)O1—Ba1—N6—C1685.4 (3)
N6—Ba1—O2—C4106.7 (2)N5—Ba1—N6—C16146.4 (3)
N5—Ba1—O2—C4107.6 (2)N2—Ba1—N6—C16157.9 (4)
N2—Ba1—O2—C4173.4 (2)N1—Ba1—N6—C1624.5 (3)
N1—Ba1—O2—C419.9 (2)O11—Ba2—N9—C1938.5 (5)
O5—Ba1—O3—C7143.6 (2)O10—Ba2—N9—C1995.8 (5)
O2—Ba1—O3—C7147.1 (2)N12—Ba2—N9—C19167.6 (5)
O4—Ba1—O3—C78.8 (2)N10—Ba2—N9—C1961.7 (5)
O1—Ba1—O3—C768.5 (3)O7—Ba2—N9—C191.4 (5)
N6—Ba1—O3—C773.4 (2)O8—Ba2—N9—C19116.4 (5)
N5—Ba1—O3—C781.4 (2)O6—Ba2—N9—C1944.5 (5)
N2—Ba1—O3—C77.0 (2)O9—Ba2—N9—C19161.6 (4)
N1—Ba1—O3—C7145.5 (2)N11—Ba2—N9—C19108.1 (5)
O5—Ba1—O3—C675.0 (2)O11—Ba2—N10—C24120.0 (3)
O2—Ba1—O3—C65.7 (2)O10—Ba2—N10—C24105.5 (3)
O4—Ba1—O3—C6150.1 (2)N12—Ba2—N10—C2419.6 (3)
O1—Ba1—O3—C672.8 (3)O7—Ba2—N10—C24153.1 (3)
N6—Ba1—O3—C667.9 (2)O8—Ba2—N10—C2429.9 (2)
N5—Ba1—O3—C6137.2 (2)O6—Ba2—N10—C24179.7 (2)
N2—Ba1—O3—C6148.3 (2)O9—Ba2—N10—C2456.3 (3)
N1—Ba1—O3—C64.1 (2)N11—Ba2—N10—C24116.9 (3)
O5—Ba1—O4—C1185.4 (2)N9—Ba2—N10—C2477.8 (3)
O3—Ba1—O4—C11147.1 (2)O11—Ba2—N10—C23108.2 (3)
O2—Ba1—O4—C1166.7 (3)O10—Ba2—N10—C2326.3 (3)
O1—Ba1—O4—C117.2 (2)N12—Ba2—N10—C23112.1 (2)
N6—Ba1—O4—C1167.8 (2)O7—Ba2—N10—C2321.3 (2)
N5—Ba1—O4—C11143.2 (2)O8—Ba2—N10—C23161.7 (3)
N2—Ba1—O4—C11145.2 (2)O6—Ba2—N10—C2348.5 (3)
N1—Ba1—O4—C117.3 (2)O9—Ba2—N10—C23171.9 (2)
O5—Ba1—O4—C10129.2 (2)N11—Ba2—N10—C23111.3 (3)
O3—Ba1—O4—C101.6 (2)N9—Ba2—N10—C2354.0 (2)
O2—Ba1—O4—C1078.7 (3)O11—Ba2—N11—C3063.8 (2)
O1—Ba1—O4—C10152.7 (2)O10—Ba2—N11—C3081.0 (2)
N6—Ba1—O4—C1077.7 (2)N12—Ba2—N11—C30150.2 (3)
N5—Ba1—O4—C1071.4 (2)N10—Ba2—N11—C3066.7 (3)
N2—Ba1—O4—C100.2 (2)O7—Ba2—N11—C306.9 (3)
N1—Ba1—O4—C10152.8 (2)O8—Ba2—N11—C30138.1 (2)
O11—Ba2—O6—C20114.7 (2)O6—Ba2—N11—C309.4 (2)
O10—Ba2—O6—C2069.0 (2)O9—Ba2—N11—C30140.8 (3)
N12—Ba2—O6—C20101.5 (2)N9—Ba2—N11—C3092.8 (3)
N10—Ba2—O6—C2058.0 (3)O11—Ba2—N11—C2972.4 (3)
O7—Ba2—O6—C2030.8 (2)O10—Ba2—N11—C29142.8 (3)
O8—Ba2—O6—C20120.7 (3)N12—Ba2—N11—C2973.6 (3)
O9—Ba2—O6—C20178.4 (2)N10—Ba2—N11—C2969.5 (3)
N11—Ba2—O6—C20151.8 (3)O7—Ba2—N11—C29143.1 (2)
N9—Ba2—O6—C2017.1 (3)O8—Ba2—N11—C291.9 (3)
O11—Ba2—O6—C31117.5 (2)O6—Ba2—N11—C29145.6 (3)
O10—Ba2—O6—C3158.9 (2)O9—Ba2—N11—C294.6 (2)
N12—Ba2—O6—C3126.4 (3)N9—Ba2—N11—C29131.0 (2)
N10—Ba2—O6—C31174.2 (2)O11—Ba2—N12—C3283.9 (5)
O7—Ba2—O6—C31158.6 (2)O10—Ba2—N12—C3257.8 (5)
O8—Ba2—O6—C31111.5 (3)N10—Ba2—N12—C32176.4 (5)
O9—Ba2—O6—C3150.6 (2)O7—Ba2—N12—C32107.6 (5)
N11—Ba2—O6—C3124.0 (2)O8—Ba2—N12—C32134.6 (5)
N9—Ba2—O6—C31110.7 (2)O6—Ba2—N12—C3226.0 (5)
O11—Ba2—O7—C2263.9 (2)O9—Ba2—N12—C3274.3 (5)
O10—Ba2—O7—C22154.2 (2)N11—Ba2—N12—C3215.8 (5)
N12—Ba2—O7—C22109.1 (2)N9—Ba2—N12—C32127.8 (5)
N10—Ba2—O7—C228.1 (2)C12—O1—C1—C2172.1 (3)
O8—Ba2—O7—C225.2 (3)Ba1—O1—C1—C252.2 (3)
O6—Ba2—O7—C22141.8 (3)C3—N1—C2—C1176.1 (3)
O9—Ba2—O7—C2267.3 (3)Ba1—N1—C2—C145.0 (3)
N11—Ba2—O7—C22139.3 (2)O1—C1—C2—N165.0 (3)
N9—Ba2—O7—C2287.9 (2)C2—N1—C3—C4172.5 (3)
O11—Ba2—O7—C2176.0 (2)Ba1—N1—C3—C442.2 (3)
O10—Ba2—O7—C2166.0 (2)C5—O2—C4—C3175.2 (3)
N12—Ba2—O7—C21111.1 (2)Ba1—O2—C4—C349.4 (3)
N10—Ba2—O7—C21147.9 (3)N1—C3—C4—O259.9 (3)
O8—Ba2—O7—C21145.0 (2)C4—O2—C5—C6165.0 (3)
O6—Ba2—O7—C212.0 (2)Ba1—O2—C5—C656.8 (3)
O9—Ba2—O7—C2172.5 (3)C7—O3—C6—C5179.6 (3)
N11—Ba2—O7—C210.5 (3)Ba1—O3—C6—C535.4 (3)
N9—Ba2—O7—C21132.3 (3)O2—C5—C6—O360.2 (3)
O11—Ba2—O8—C2672.1 (2)C6—O3—C7—C8177.4 (3)
O10—Ba2—O8—C2699.1 (3)Ba1—O3—C7—C838.2 (3)
N12—Ba2—O8—C2679.8 (2)C9—N2—C8—C7178.6 (3)
N10—Ba2—O8—C26142.5 (3)Ba1—N2—C8—C757.9 (3)
O7—Ba2—O8—C26139.5 (2)O3—C7—C8—N265.8 (3)
O6—Ba2—O8—C2666.2 (3)C8—N2—C9—C10179.1 (3)
O9—Ba2—O8—C268.3 (2)Ba1—N2—C9—C1059.4 (3)
N11—Ba2—O8—C265.5 (3)C11—O4—C10—C9176.9 (3)
N9—Ba2—O8—C26153.6 (2)Ba1—O4—C10—C928.7 (3)
O11—Ba2—O8—C2569.8 (2)N2—C9—C10—O459.1 (3)
O10—Ba2—O8—C25119.0 (2)C10—O4—C11—C12174.6 (3)
N12—Ba2—O8—C25138.3 (2)Ba1—O4—C11—C1236.6 (3)
N10—Ba2—O8—C250.6 (2)C1—O1—C12—C11169.5 (3)
O7—Ba2—O8—C252.4 (3)Ba1—O1—C12—C1154.2 (3)
O6—Ba2—O8—C2575.7 (3)O4—C11—C12—O158.7 (3)
O9—Ba2—O8—C25150.2 (3)C31—O6—C20—C21169.0 (3)
N11—Ba2—O8—C25147.4 (2)Ba2—O6—C20—C2161.6 (3)
N9—Ba2—O8—C2564.5 (2)C22—O7—C21—C20176.5 (3)
O11—Ba2—O9—C28118.5 (2)Ba2—O7—C21—C2033.1 (4)
O10—Ba2—O9—C2818.0 (3)O6—C20—C21—O763.5 (4)
N12—Ba2—O9—C2867.5 (2)C21—O7—C22—C23177.0 (3)
N10—Ba2—O9—C28177.1 (2)Ba2—O7—C22—C2335.1 (4)
O7—Ba2—O9—C28115.0 (3)C24—N10—C23—C22179.7 (3)
O8—Ba2—O9—C28156.3 (3)Ba2—N10—C23—C2248.9 (3)
O6—Ba2—O9—C2853.7 (2)O7—C22—C23—N1054.6 (4)
N11—Ba2—O9—C2826.7 (2)C23—N10—C24—C25167.2 (3)
N9—Ba2—O9—C2899.7 (2)Ba2—N10—C24—C2559.7 (3)
O11—Ba2—O9—C27109.4 (2)C26—O8—C25—C24174.7 (3)
O10—Ba2—O9—C27114.1 (2)Ba2—O8—C25—C2429.8 (4)
N12—Ba2—O9—C2764.6 (2)N10—C24—C25—O859.4 (4)
N10—Ba2—O9—C2750.8 (2)C25—O8—C26—C27177.6 (3)
O7—Ba2—O9—C27112.9 (3)Ba2—O8—C26—C2738.4 (4)
O8—Ba2—O9—C2724.1 (2)C28—O9—C27—C26172.1 (3)
O6—Ba2—O9—C27174.2 (2)Ba2—O9—C27—C2654.8 (3)
N11—Ba2—O9—C27158.8 (3)O8—C26—C27—O961.8 (4)
N9—Ba2—O9—C2732.4 (3)C27—O9—C28—C29173.7 (3)
O5—Ba1—N1—C3103.9 (2)Ba2—O9—C28—C2954.6 (3)
O3—Ba1—N1—C311.0 (2)C30—N11—C29—C28171.3 (3)
O2—Ba1—N1—C312.63 (19)Ba2—N11—C29—C2833.6 (4)
O4—Ba1—N1—C3143.73 (19)O9—C28—C29—N1158.0 (4)
O1—Ba1—N1—C3143.6 (2)C29—N11—C30—C31179.9 (3)
N6—Ba1—N1—C363.3 (2)Ba2—N11—C30—C3140.9 (4)
N5—Ba1—N1—C3109.9 (2)C20—O6—C31—C30177.6 (3)
N2—Ba1—N1—C369.0 (3)Ba2—O6—C31—C3054.6 (4)
O5—Ba1—N1—C2125.7 (2)N11—C30—C31—O663.8 (4)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···N4i0.84 (3)2.19 (2)2.997 (4)161 (4)
O5—H5D···N3iii0.84 (3)1.98 (3)2.804 (4)168 (3)
O10—H10C···N8iv0.83 (4)2.09 (3)2.916 (3)170 (3)
O10—H10D···N60.84 (4)2.35 (2)3.132 (3)156 (3)
O11—H11C···N4ii0.84 (4)2.01 (3)2.845 (4)177 (3)
O11—H11D···N7v0.84 (3)2.09 (3)2.920 (4)176 (4)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x+1, y, z+2; (iv) x+1, y, z; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Au4Ba2(CN)8(C12H26N2O4)2(H2O)3]
Mr1849.45
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)11.0962 (3), 15.9223 (5), 16.5480 (5)
α, β, γ (°)64.142 (2), 70.523 (2), 79.027 (3)
V3)2476.90 (13)
Z2
Radiation typeMo Kα
µ (mm1)13.43
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.174, 0.296
No. of measured, independent and
observed [I > 2σ(I)] reflections
46665, 15056, 13234
Rint0.028
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.041, 1.03
No. of reflections15056
No. of parameters585
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 0.89

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ba1—N12.959 (2)Ba2—O82.888 (2)
Ba1—N22.919 (2)Ba2—O92.929 (2)
Ba1—N52.889 (3)Ba2—O102.859 (2)
Ba1—N62.877 (3)Ba2—O112.761 (2)
Ba1—O12.854 (2)Au1—Au23.5655 (2)
Ba1—O22.827 (2)Au1—C131.978 (3)
Ba1—O32.802 (2)Au1—C141.991 (3)
Ba1—O42.850 (2)Au2—C151.986 (3)
Ba1—O52.764 (2)Au3—C161.985 (3)
Ba2—N92.939 (3)Au3—C171.990 (3)
Ba2—N102.867 (3)Au3—Au43.2670 (2)
Ba2—N112.929 (3)Au4—C181.988 (3)
Ba2—N122.867 (3)Au4—C191.989 (3)
Ba2—O62.888 (2)Au5—C321.985 (3)
Ba2—O72.884 (2)
C13—Au1—C14177.12 (14)C18—Au4—C19176.60 (12)
C16—Au3—C17177.40 (13)
C14—Au1—Au2—C1553.73 (13)C16—Au3—Au4—C18125.59 (12)
C13—Au1—Au2—C15127.71 (13)C17—Au3—Au4—C1854.37 (13)
C14—Au1—Au2—C15i126.27 (13)C16—Au3—Au4—C1955.81 (12)
C13—Au1—Au2—C15i52.29 (13)C17—Au3—Au4—C19124.22 (13)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···N4i0.84 (3)2.19 (2)2.997 (4)161 (4)
O5—H5D···N3ii0.84 (3)1.98 (3)2.804 (4)168 (3)
O10—H10C···N8iii0.83 (4)2.09 (3)2.916 (3)170 (3)
O10—H10D···N60.84 (4)2.35 (2)3.132 (3)156 (3)
O11—H11C···N4iv0.84 (4)2.01 (3)2.845 (4)177 (3)
O11—H11D···N7v0.84 (3)2.09 (3)2.920 (4)176 (4)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z; (iv) x+2, y+1, z+2; (v) x+1, y+2, z+1.
 

References

First citationAnderson, K. M., Goeta, A. E. & Steed, J. W. (2007). Inorg. Chem. 46, 6444–6451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOlmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPathaneni, S. S. & Desiraju, G. R. (1993). J. Chem. Soc. Dalton Trans. pp. 319–322.  CrossRef Web of Science Google Scholar
First citationSchmidbaur, H. (1995). Chem. Soc. Rev. 24, 391–400.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m300-m301
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds