metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m144-m145

Di-μ-chlorido-bis­­[chlorido(1,4,6-tri­methyl-6-nitro-1,4-diazepine)copper(II)]

aDepto. de Química–UFSC, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 3 December 2008; accepted 19 December 2008; online 8 January 2009)

The title neutral copper complex, [Cu2Cl4(C8H17N3O2)2], shows a binuclear center with a Cu—(μ-Cl)2—Cu core, in which each copper ion is coordinated by the N,N,O donor atoms of the tridentate ligand 1,4,6-trimethyl-6-nitro-1,4-diazepine (meaaz-NO2) and three chloride exogenous ligands. Each metal ion is facially coordinated by meaaz-NO2 through N,N,O donor atoms, whereas two bridging and one terminal chloride ions occupy the other face of the highly Jahn–Teller-distorted octa­hedron. Two N atoms from tertiary amine groups of the meaaz-NO2 ligand and two exogenous Cl atoms with short Cu—N and Cu—Cl distances define the equatorial plane. The coordination around each CuII ion is completed by another Cl atom and an O atom from the NO2 group, in the axial positions. The binuclear complex exhibits a centrosymmetric structure with point symmetry [\overline{1}].

Related literature

For related literature, see: Belousoff et al. (2006[Belousoff, M. J., Duriska, M. B., Graham, B., Batten, S. R., Moubaraki, B., Murray, K. S. & Spiccia, L. (2006). Inorg. Chem. 45, 3746-3755.]); Deal & Burstyn (1996[Deal, K. A. & Burstyn, J. N. (1996). Inorg. Chem. 35, 2792-2798.]); Fry et al. (2005[Fry, F. H., Fischmann, A. J., Belousoff, M. J., Spiccia, L. & Brgger, J. (2005). Inorg. Chem. 44, 941-950.]); Hegg & Burstyn (1998[Hegg, E. L. & Burstyn, J. N. (1998). Coord. Chem. Rev. 173, 133-165.]); Peralta et al. (2005[Peralta, R. A., Neves, A., Bortoluzzi, A. J., Casellato, A., Anjos, A., Greatti, A., Xavier, F. R. & Szpoganicz, B. (2005). Inorg. Chem. 44, 7690-7692.]); Rodriguez, et al. (1999[Rodriguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328-2334.]); Romba et al. (2006[Romba, J., Kuppert, D., Morgenstern, B., Neis, C., Steinhauser, S., Weyhermüller, T. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 314-328.]). For the synthesis of the meaaz-NO2 ligand see Ge et al. (2006[Ge, S., Bambirra, S., Meetsma, A. & Hessen, B. (2006). Chem. Commun. pp. 3320-3322.]). For related structures, see: Astner et al. (2008[Astner, J., Weitzer, M., Foxon, S. P., Schindler, S., Heinemann, F. W., Mukherjee, J., Gupta, R., Mahadevan, V. & Mukherjee, R. (2008). Inorg. Chim. Acta, 361, 279-292.]); Schwindinger et al. (1980[Schwindinger, W. F., Fawcett, T. G., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem. 19, 1379-1381.]); Steed et al. (2007[Steed, J. W., Goeta, A. E., Lipkowski, J., Swierczynski, D., Panteleonc, V. & Handa, S. (2007). Chem. Commun. pp. 813-815.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C8H17N3O2)2]

  • Mr = 643.37

  • Monoclinic, P 21 /n

  • a = 10.5478 (2) Å

  • b = 10.9251 (2) Å

  • c = 11.4430 (2) Å

  • β = 102.297 (1)°

  • V = 1288.39 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 296 (2) K

  • 0.31 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.833

  • 25284 measured reflections

  • 2528 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 2528 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2, BIS and COSMO (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tridentate ligands that are able to force facial geometry, such as 1,4,7-tacn (1,4,7-triazacyclononane), daza (1,4-diazepan-6-amine) (Romba, et al., 2006), tach (cis,cis-1,3,5-triaminocyclohexane) (Hegg & Burstyn, 1998), play an important role in the stabilization of a great number of structural motifs in coordination compounds and in biological systems (Peralta et al., 2005). Copper complexes with this kind of ligand have been reported over the past few years with a view to the study of the hydrolysis of phosphate esters, proteins and DNA (Deal & Burstyn, 1996; Fry et al., 2005). Indeed such copper(II) complexes exhibit high catalytic reactivity in the hydrolysis of DNA model diesters as bis(4-nitrophenyl)phosphate with rate constants of 10 -4 s-1 (Belousoff et al., 2006). In this context we report herein the synthesis and X-ray analysis of a new dinuclear copper complex with the tridentate ligand meaaz-NO2.

This neutral copper complex exhibits a centrosymmetric structure (Fig. 1) with a highly distorted octahedral environment around the copper center. Each metal ion is facially coordinated by meaaz-NO2 through N2O donors atoms, whereas two bridged and one terminal coordinated chlorines occupy the other face of the distorted octahedron. Two amine nitrogen atoms (N3 and N6) of the ligand and two exogenous chlorines (Cl1, Cl2) lie in the equatorial plane. The coordination sphere of Cu1 is completed by another chlorine (Cl2') and an oxygen atom (O2) from the NO2 group, in the axial positions. In the equatorial plane, the Cu—N and Cu—Cl bond lengths are Cu1—N6 2.064 (2) Å, Cu1—N3 2.122 (2) Å, Cu1—Cl2 2.2686 (7) Å and Cu1—Cl1 2.2694 (7) Å), respectively. The longer bond lengths Cu1—Cl2' (2.7611 (8) Å) and Cu1—O2 (2.845 (2) Å) are associated with the two apical positions, as expected for a (4 + 2) distorted geometry, as is common for CuII. The Cu—N and the Cu—Cl bond lengths in the equatorial plane are comparable to those found for other copper complexes [Cu(tacn)Cl2] (Cu—N2 2.063 (4) Å, Cu—N3 2.038 (4) Å, CU—Cl1 2.268 (1) Å and Cu—Cl2 2.312 (1) Å) (Schwindinger, et al., 1980), [Cu2(µ-Cl)2(Me-bpa)2(ClO4)2] (Me-bpa = N-methyl-bis(2-pyridylmethyl)amine) (Cu1—N36 1.983 (2) Å, Cu1—N10 2.036 (2) Å, Cu1—N26 1.989 (2) Å and Cu1—Cl1 2.2587 (6) Å) (Astner et al., 2008) and [Cu(me3tacn)Cl2] (Cu1—N1 2.100 (2) Å, Cu1—N2 2.111 (2) Å, Cu1—Cl2 2.2558 (9) Å and Cu1—Cl1 2.3050 (8) Å) (Steed et al., 2007). The seven-membered chelate ring of the meaaz-NO2 ligand restricts the N—Cu—N angle to 77.35 (8)°, which is about 6° smaller than the respective angles formed by nine-membered ring in the Cu-tacn complexes.

As described in Rodriguez, et al. (1999), there are three kinds of configurations for copper complex containing the Cu-(µ-Cl)2—Cu core: Type I, in which two square pyramids share one base-to-apex edge with the two bases nearly perpendicular to one another; Type II, square pyramids sharing one base-to-apex edge but with parallel basal planes and Type III, square pyramids sharing a basal edge with coplanar basal planes. The configuration of the Cu centers reported here are Type II given that the axial positions of one copper(II) center is directed toward the top and the same axis of the adjacent center is in the anti position. Although the Cu centers in the complex are hexacoordinate, it can be considered as type II, because the sixth coordination bond is very long (Cu—O2 = 2.845 (2)Å).

The packing is mainly governed by weak C—H···O and C—H···Cl interactions with average D···A distances of 2.99 Å and 3.74 Å, respectively. In addition, the packing analysis reveals that the molecules are accomodated in layers parallel to the (001) plane and are stacked along crystallographic a axis (Fig. 2).

Related literature top

For related literature, see: Belousoff et al. (2006); Deal & Burstyn (1996); Fry et al. (2005); Hegg & Burstyn (1998); Peralta et al. (2005); Rodriguez, et al. (1999); Romba et al. (2006). For the synthesis of the meaaz-NO2 ligand see Ge et al. (2006). For related structures, see: Astner et al. (2008); Schwindinger et al. (1980); Steed et al. (2007).

Experimental top

The ligand 6-nitro-1,4,7-trimethyl-1,4-diazepine (meaaz-NO2) was prepared as reported in the literature (Ge et al., 2006). The ligand was obtained with good yeld and was characterized by 1H NMR [δ (p.p.m.) (CDCl3) 400 MHz: 1.46 (s, 3H); 2.36 (s, 6H); 2.48 (m, 2H); 2.56 (m, 2H); 2.66 and 3.36 (AB system, 4H)].

Copper complex was synthesized by adding 187 mg of the ligand meaaz-NO2 (1.0 mmol) to a CH3CN solution containing CuCl2.2H2O (171 mg, 1.0 mmol). The solution was then concentrated under magnetic stirring and was allowed to stand at room temperature for a few days, yielding a small number of dark green crystals which were suitable for the single-crystal X-ray analysis.

Refinement top

H atoms were placed at their idealized positions with distances of 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH2 and CH3, respectively.

Computing details top

Data collection: APEX2, BIS and COSMO (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of copper complex showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. View down the a axis of the packing of copper complex.
Di-µ-chlorido-bis[chlorido(1,4,6-trimethyl-6-nitro-1,4-diazepine)copper(II)] top
Crystal data top
[Cu2Cl4(C8H17N3O2)2]F(000) = 660
Mr = 643.37Dx = 1.658 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6584 reflections
a = 10.5478 (2) Åθ = 2.6–29.9°
b = 10.9251 (2) ŵ = 2.10 mm1
c = 11.4430 (2) ÅT = 296 K
β = 102.297 (1)°Block, dark green
V = 1288.39 (4) Å30.31 × 0.14 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2528 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1312
Tmin = 0.562, Tmax = 0.833k = 1313
25284 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.7796P]
where P = (Fo2 + 2Fc2)/3
2528 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu2Cl4(C8H17N3O2)2]V = 1288.39 (4) Å3
Mr = 643.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.5478 (2) ŵ = 2.10 mm1
b = 10.9251 (2) ÅT = 296 K
c = 11.4430 (2) Å0.31 × 0.14 × 0.09 mm
β = 102.297 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2080 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.833Rint = 0.036
25284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.76 e Å3
2528 reflectionsΔρmin = 0.37 e Å3
148 parameters
Special details top

Experimental. Absorption correction: SADABS (Bruker, 2006) was used to scale the data and to perform the multi-scan semi-empirical absorption correction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41672 (3)0.13540 (3)1.03616 (3)0.03146 (12)
Cl10.45369 (7)0.11762 (7)1.23819 (6)0.0467 (2)
Cl20.62792 (6)0.10672 (6)1.02889 (7)0.04311 (19)
N10.4017 (2)0.4025 (2)1.0951 (2)0.0379 (5)
C10.2738 (2)0.3853 (2)0.9997 (2)0.0328 (6)
C20.3105 (2)0.3551 (2)0.8818 (2)0.0323 (5)
H2A0.23440.36650.81820.039*
H2B0.37520.41380.86890.039*
N30.3623 (2)0.22930 (18)0.87072 (18)0.0305 (5)
C40.2543 (3)0.1488 (2)0.8105 (2)0.0385 (6)
H4A0.28870.07050.79190.046*
H4B0.20990.18620.73610.046*
C50.1594 (3)0.1294 (2)0.8915 (2)0.0384 (6)
H5A0.08390.18090.86470.046*
H5B0.13070.04480.88600.046*
N60.2196 (2)0.15908 (19)1.01947 (18)0.0318 (5)
C70.1930 (3)0.2888 (3)1.0467 (2)0.0392 (6)
H7A0.20710.29781.13290.047*
H7B0.10210.30561.01390.047*
C80.2051 (3)0.5099 (3)0.9930 (3)0.0437 (7)
H8A0.26070.57210.97230.065*
H8B0.18570.52861.06930.065*
H8C0.12600.50680.93330.065*
O20.5045 (2)0.38177 (18)1.0687 (2)0.0487 (5)
O10.3919 (3)0.4391 (3)1.1928 (2)0.0739 (8)
C110.4596 (3)0.2357 (3)0.7947 (3)0.0458 (7)
H11A0.49050.15480.78340.069*
H11B0.53100.28600.83300.069*
H11C0.42040.27030.71850.069*
C120.1585 (3)0.0810 (3)1.0982 (3)0.0480 (7)
H12A0.19480.10031.18030.072*
H12B0.17450.00361.08370.072*
H12C0.06670.09571.08150.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02805 (18)0.03469 (19)0.02830 (19)0.00043 (12)0.00153 (12)0.00140 (13)
Cl10.0457 (4)0.0598 (5)0.0286 (3)0.0011 (3)0.0057 (3)0.0030 (3)
Cl20.0305 (3)0.0414 (4)0.0548 (4)0.0014 (3)0.0034 (3)0.0005 (3)
N10.0431 (14)0.0303 (12)0.0341 (13)0.0022 (10)0.0052 (10)0.0050 (10)
C10.0286 (13)0.0343 (14)0.0307 (13)0.0012 (10)0.0043 (10)0.0038 (10)
C20.0350 (13)0.0290 (13)0.0291 (13)0.0018 (10)0.0014 (10)0.0010 (10)
N30.0340 (11)0.0295 (11)0.0264 (10)0.0021 (8)0.0026 (8)0.0009 (9)
C40.0474 (16)0.0340 (15)0.0280 (13)0.0064 (11)0.0059 (11)0.0032 (11)
C50.0362 (14)0.0385 (15)0.0339 (14)0.0074 (11)0.0071 (11)0.0005 (11)
N60.0291 (11)0.0348 (12)0.0290 (11)0.0026 (9)0.0004 (9)0.0036 (9)
C70.0367 (14)0.0420 (16)0.0389 (15)0.0005 (11)0.0080 (12)0.0009 (12)
C80.0431 (16)0.0391 (15)0.0450 (16)0.0096 (12)0.0008 (13)0.0041 (13)
O20.0340 (11)0.0482 (12)0.0561 (13)0.0006 (8)0.0078 (9)0.0021 (10)
O10.0730 (17)0.095 (2)0.0429 (13)0.0211 (14)0.0124 (11)0.0325 (13)
C110.0544 (18)0.0485 (17)0.0381 (15)0.0034 (14)0.0176 (13)0.0033 (13)
C120.0418 (16)0.0530 (18)0.0499 (18)0.0078 (13)0.0114 (13)0.0137 (15)
Geometric parameters (Å, º) top
Cu1—N62.064 (2)C4—H4A0.9700
Cu1—N32.122 (2)C4—H4B0.9700
Cu1—Cl22.2686 (7)C5—N61.502 (3)
Cu1—Cl12.2694 (7)C5—H5A0.9700
Cu1—Cl2i2.7611 (8)C5—H5B0.9700
Cu1—O22.845 (2)N6—C121.484 (3)
Cl2—Cu1i2.7611 (8)N6—C71.491 (3)
N1—O21.207 (3)C7—H7A0.9700
N1—O11.212 (3)C7—H7B0.9700
N1—C11.556 (3)C8—H8A0.9600
C1—C21.517 (4)C8—H8B0.9600
C1—C71.524 (4)C8—H8C0.9600
C1—C81.536 (4)C11—H11A0.9600
C2—N31.495 (3)C11—H11B0.9600
C2—H2A0.9700C11—H11C0.9600
C2—H2B0.9700C12—H12A0.9600
N3—C111.482 (3)C12—H12B0.9600
N3—C41.487 (3)C12—H12C0.9600
C4—C51.517 (4)
N6—Cu1—N377.35 (8)N3—C4—H4B109.7
N6—Cu1—Cl2172.72 (6)C5—C4—H4B109.7
N3—Cu1—Cl296.62 (6)H4A—C4—H4B108.2
N6—Cu1—Cl193.22 (6)N6—C5—C4111.6 (2)
N3—Cu1—Cl1154.87 (6)N6—C5—H5A109.3
Cl2—Cu1—Cl193.93 (3)C4—C5—H5A109.3
N6—Cu1—Cl2i89.11 (6)N6—C5—H5B109.3
N3—Cu1—Cl2i102.97 (6)C4—C5—H5B109.3
Cl2—Cu1—Cl2i88.29 (2)H5A—C5—H5B108.0
Cl1—Cu1—Cl2i100.08 (3)C12—N6—C7107.1 (2)
N6—Cu1—O2100.77 (7)C12—N6—C5108.6 (2)
N3—Cu1—O271.22 (7)C7—N6—C5110.5 (2)
Cl2—Cu1—O280.84 (5)C12—N6—Cu1115.53 (16)
Cl1—Cu1—O288.12 (5)C7—N6—Cu1109.30 (15)
Cl2i—Cu1—O2166.84 (5)C5—N6—Cu1105.75 (16)
Cu1—Cl2—Cu1i91.71 (2)N6—C7—C1116.1 (2)
O2—N1—O1123.4 (2)N6—C7—H7A108.3
O2—N1—C1119.5 (2)C1—C7—H7A108.3
O1—N1—C1117.1 (2)N6—C7—H7B108.3
C2—C1—C7115.6 (2)C1—C7—H7B108.3
C2—C1—C8110.8 (2)H7A—C7—H7B107.4
C7—C1—C8109.7 (2)C1—C8—H8A109.5
C2—C1—N1107.6 (2)C1—C8—H8B109.5
C7—C1—N1107.6 (2)H8A—C8—H8B109.5
C8—C1—N1104.9 (2)C1—C8—H8C109.5
N3—C2—C1116.3 (2)H8A—C8—H8C109.5
N3—C2—H2A108.2H8B—C8—H8C109.5
C1—C2—H2A108.2N1—O2—Cu185.76 (15)
N3—C2—H2B108.2N3—C11—H11A109.5
C1—C2—H2B108.2N3—C11—H11B109.5
H2A—C2—H2B107.4H11A—C11—H11B109.5
C11—N3—C4108.3 (2)N3—C11—H11C109.5
C11—N3—C2108.6 (2)H11A—C11—H11C109.5
C4—N3—C2109.0 (2)H11B—C11—H11C109.5
C11—N3—Cu1117.18 (17)N6—C12—H12A109.5
C4—N3—Cu199.36 (15)N6—C12—H12B109.5
C2—N3—Cu1113.78 (15)H12A—C12—H12B109.5
N3—C4—C5109.8 (2)N6—C12—H12C109.5
N3—C4—H4A109.7H12A—C12—H12C109.5
C5—C4—H4A109.7H12B—C12—H12C109.5
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C8H17N3O2)2]
Mr643.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.5478 (2), 10.9251 (2), 11.4430 (2)
β (°) 102.297 (1)
V3)1288.39 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.31 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.562, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
25284, 2528, 2080
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections2528
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.37

Computer programs: APEX2, BIS and COSMO (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support. The authors also thank to Dr Manfredo Hörner and Dr Robert A. Burrow at Universidade Federal de Santa Maria for the crystallographic facilities.

References

First citationAstner, J., Weitzer, M., Foxon, S. P., Schindler, S., Heinemann, F. W., Mukherjee, J., Gupta, R., Mahadevan, V. & Mukherjee, R. (2008). Inorg. Chim. Acta, 361, 279–292.  Web of Science CSD CrossRef CAS Google Scholar
First citationBelousoff, M. J., Duriska, M. B., Graham, B., Batten, S. R., Moubaraki, B., Murray, K. S. & Spiccia, L. (2006). Inorg. Chem. 45, 3746–3755.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2, COSMO, BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeal, K. A. & Burstyn, J. N. (1996). Inorg. Chem. 35, 2792–2798.  CrossRef CAS Web of Science Google Scholar
First citationFry, F. H., Fischmann, A. J., Belousoff, M. J., Spiccia, L. & Brgger, J. (2005). Inorg. Chem. 44, 941–950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGe, S., Bambirra, S., Meetsma, A. & Hessen, B. (2006). Chem. Commun. pp. 3320–3322.  Web of Science CSD CrossRef Google Scholar
First citationHegg, E. L. & Burstyn, J. N. (1998). Coord. Chem. Rev. 173, 133–165.  Web of Science CrossRef CAS Google Scholar
First citationPeralta, R. A., Neves, A., Bortoluzzi, A. J., Casellato, A., Anjos, A., Greatti, A., Xavier, F. R. & Szpoganicz, B. (2005). Inorg. Chem. 44, 7690–7692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodriguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem. 38, 2328–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationRomba, J., Kuppert, D., Morgenstern, B., Neis, C., Steinhauser, S., Weyhermüller, T. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 314–328.  Web of Science CSD CrossRef Google Scholar
First citationSchwindinger, W. F., Fawcett, T. G., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem. 19, 1379–1381.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteed, J. W., Goeta, A. E., Lipkowski, J., Swierczynski, D., Panteleonc, V. & Handa, S. (2007). Chem. Commun. pp. 813–815.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m144-m145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds