organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­nitro­pyridin-4(1H)-one monohydrate

aChemistry Department, Jingning Normal College, Wulanchabu, Inner Mongolia 012000, People's Republic of China, bSchool of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 July 2008; accepted 31 July 2008; online 6 August 2008)

The three independent organic mol­ecules of 3,5-dinitro­pyridin-4(1H)-one monohydrate, C5H3N3O5·H2O, each feature an N—H⋯Owater hydrogen bond. Each water mol­ecule serves as hydrogen-bond donor to two carbonyl O atoms; these hydrogen bonds give rise to a layer motif. Two of the three formula units lie on special positions of site symmetry 2.

Related literature

The parent pyridin-4-one homolog crystallizes with five pyridone and six water mol­ecules in the asymmetric unit; see: Jones (2001[Jones, P. G. (2001). Acta Cryst. C57, 880-882.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3N3O5·H2O

  • Mr = 203.12

  • Orthorhombic, P b c n

  • a = 21.728 (2) Å

  • b = 21.654 (2) Å

  • c = 6.5713 (5) Å

  • V = 3091.7 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 (2) K

  • 0.45 × 0.45 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: none

  • 21800 measured reflections

  • 3555 independent reflections

  • 2852 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 1.08

  • 3555 reflections

  • 281 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1w 0.85 (1) 1.86 (1) 2.703 (2) 172 (2)
N5—H5⋯O2w 0.85 (1) 1.84 (1) 2.692 (3) 180
N6—H6⋯O3w 0.85 (1) 1.87 (1) 2.723 (3) 180
O1w—H11⋯O8i 0.85 (1) 2.04 (1) 2.878 (2) 168 (2)
O1w—H12⋯O11ii 0.86 (1) 2.02 (1) 2.866 (2) 168 (2)
O2w—H21⋯O3iii 0.84 (1) 2.05 (1) 2.888 (2) 173 (1)
O3w—H31⋯O3 0.84 (1) 2.05 (1) 2.890 (2) 172 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

3,5-Dinitro-4-pyridinol, a specialty chemical, is assumed in chemical catalogs to exist in the enol form. The homolog, 4-pyridinol, is in fact 4-pyridinone.6/5hydrate. It has five independent pyridone and six water molecules that are hydrogen bonded to form layers (Jones, 2001). The presence of two electron-withdrawing groups in the title compound should enhance its propensity to form hydrogen bonds, and this is borne out in the present study. The three independent molecules of 3,5-dinitro-1H-pyridin-4-one hydrate (Fig. 1) each feature an N–H···Owater hydrogen bond; each water molecule serves as hydrogen-bond donor to two carbonyl oxygen atoms, and these hydrogen bonds give rise to a layered structure.

Related literature top

The parent pyridin-4-one homolog crystallizes with five pyridone and six water molecules in the asymmetric unit; see: Jones (2001).

Experimental top

4-Hydroxy-3-pyridine (19 g, 0.02 mol) was dissolved in fuming sulfuric acid (50% by SO3 content) (60 ml), and to the solution was added an oleum-fuming nitric acid (1/3) mixture (50 ml). The temperature was kept at 0°C for an hour. The temperature was raised to 413 K over a period of one hour, and then held at 403 K for another 16 h. The mixture was poured into ice (200 g) to quench the reaction. Some 27 g of material was isolated. Crystals were obtained by recrystallization from water.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement using a riding model approximation, with U(H) 1.2Ueq(C). The amino and water H-atoms were refined with distance restraints of O–H = N–H 0.85 (1) and H···H 1.39 (1) Å; their temperature factors Uiso were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of the three independent molecules of C5H3N3O5.H2O at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
3,5-Dinitropyridin-4(1H)-one monohydrate top
Crystal data top
C5H3N3O5·H2OF(000) = 1664
Mr = 203.12Dx = 1.746 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6494 reflections
a = 21.728 (2) Åθ = 2.7–27.9°
b = 21.654 (2) ŵ = 0.16 mm1
c = 6.5713 (5) ÅT = 293 K
V = 3091.7 (4) Å3Block, colorless
Z = 160.45 × 0.45 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
2852 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
Detector resolution: 9 pixels mm-1h = 2827
ϕ and ω scansk = 2827
21800 measured reflectionsl = 88
3555 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.6904P]
where P = (Fo2 + 2Fc2)/3
3555 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.35 e Å3
10 restraintsΔρmin = 0.31 e Å3
Crystal data top
C5H3N3O5·H2OV = 3091.7 (4) Å3
Mr = 203.12Z = 16
Orthorhombic, PbcnMo Kα radiation
a = 21.728 (2) ŵ = 0.16 mm1
b = 21.654 (2) ÅT = 293 K
c = 6.5713 (5) Å0.45 × 0.45 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
2852 reflections with I > 2σ(I)
21800 measured reflectionsRint = 0.022
3555 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04010 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
3555 reflectionsΔρmin = 0.31 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69961 (7)0.46193 (6)0.2892 (3)0.0552 (4)
O20.62136 (6)0.50982 (6)0.4163 (3)0.0464 (4)
O30.60319 (6)0.62125 (6)0.2292 (2)0.0431 (4)
O40.61633 (6)0.73545 (6)0.0695 (3)0.0486 (4)
O50.70310 (8)0.77792 (8)0.1081 (6)0.1176 (12)
O60.60858 (6)0.75858 (6)0.5467 (3)0.0496 (4)
O70.65774 (6)0.67898 (7)0.6579 (3)0.0562 (4)
O80.50000.77618 (7)0.75000.0389 (4)
O90.65904 (7)0.92189 (7)0.1991 (3)0.0659 (5)
O100.61401 (6)1.00203 (6)0.0759 (3)0.0482 (4)
O110.50001.02039 (7)0.25000.0357 (4)
O1W0.91543 (6)0.62174 (6)0.2293 (3)0.0507 (4)
O2W0.50000.46255 (9)0.75000.0627 (7)
O3W0.50000.70522 (8)0.25000.0416 (5)
N10.67114 (7)0.50953 (7)0.3278 (3)0.0360 (3)
N20.67066 (7)0.73271 (7)0.1089 (3)0.0435 (4)
N30.79137 (7)0.61956 (8)0.1992 (3)0.0434 (4)
N40.61008 (6)0.70807 (7)0.6311 (3)0.0357 (3)
N50.50000.58686 (9)0.75000.0376 (5)
N60.50000.83100 (9)0.25000.0384 (5)
N70.61264 (7)0.95139 (7)0.1582 (3)0.0377 (4)
C10.76100 (8)0.56854 (9)0.2549 (3)0.0390 (4)
H1A0.78290.53290.28570.047*
C20.69872 (8)0.56805 (8)0.2672 (3)0.0315 (4)
C30.65995 (8)0.62114 (7)0.2208 (3)0.0302 (4)
C40.69804 (8)0.67347 (8)0.1610 (3)0.0337 (4)
C50.76066 (8)0.67135 (9)0.1539 (3)0.0405 (4)
H5A0.78250.70650.11690.049*
C60.55166 (8)0.61756 (8)0.7027 (3)0.0345 (4)
H6A0.58740.59570.67330.041*
C70.55244 (7)0.68038 (7)0.6972 (3)0.0290 (4)
C80.50000.71922 (10)0.75000.0269 (5)
C90.55223 (9)0.86172 (8)0.2128 (3)0.0360 (4)
H90.58840.83980.18930.043*
C100.55324 (8)0.92451 (7)0.2090 (3)0.0301 (4)
C110.50000.96327 (10)0.25000.0278 (5)
H110.9376 (8)0.6540 (6)0.220 (4)0.059 (7)*
H120.9385 (8)0.5898 (6)0.218 (4)0.053 (7)*
H210.4680 (2)0.4409 (7)0.757 (4)0.055 (7)*
H310.5318 (3)0.6832 (7)0.236 (4)0.058 (7)*
H30.8306 (5)0.6181 (10)0.199 (4)0.057 (7)*
H50.50000.5477 (5)0.75000.051 (9)*
H60.50000.7915 (5)0.25000.051 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0543 (9)0.0322 (7)0.0790 (12)0.0112 (6)0.0045 (8)0.0018 (7)
O20.0369 (7)0.0417 (7)0.0607 (9)0.0020 (6)0.0068 (7)0.0077 (7)
O30.0218 (6)0.0344 (7)0.0730 (10)0.0014 (5)0.0029 (6)0.0061 (6)
O40.0381 (7)0.0401 (7)0.0676 (10)0.0086 (6)0.0039 (7)0.0016 (7)
O50.0504 (10)0.0435 (10)0.259 (4)0.0121 (8)0.0082 (15)0.0441 (15)
O60.0415 (7)0.0392 (7)0.0681 (10)0.0090 (6)0.0128 (7)0.0059 (7)
O70.0273 (7)0.0575 (9)0.0837 (12)0.0076 (6)0.0053 (7)0.0044 (8)
O80.0326 (9)0.0211 (8)0.0631 (13)0.0000.0069 (8)0.000
O90.0304 (7)0.0501 (9)0.1171 (16)0.0104 (6)0.0009 (8)0.0031 (9)
O100.0399 (7)0.0372 (7)0.0673 (10)0.0056 (6)0.0073 (7)0.0088 (7)
O110.0305 (9)0.0199 (8)0.0567 (12)0.0000.0020 (8)0.000
O1W0.0263 (7)0.0294 (7)0.0962 (13)0.0008 (5)0.0054 (7)0.0013 (7)
O2W0.0296 (10)0.0253 (9)0.133 (2)0.0000.0014 (12)0.000
O3W0.0286 (9)0.0244 (8)0.0719 (14)0.0000.0004 (9)0.000
N10.0345 (8)0.0322 (8)0.0414 (9)0.0028 (6)0.0042 (7)0.0014 (6)
N20.0356 (8)0.0335 (8)0.0614 (11)0.0008 (6)0.0060 (8)0.0067 (7)
N30.0206 (7)0.0488 (10)0.0608 (11)0.0008 (6)0.0006 (7)0.0012 (8)
N40.0275 (7)0.0353 (8)0.0442 (9)0.0025 (6)0.0039 (6)0.0084 (7)
N50.0434 (12)0.0192 (9)0.0503 (14)0.0000.0058 (10)0.000
N60.0460 (13)0.0188 (9)0.0504 (13)0.0000.0006 (10)0.000
N70.0293 (7)0.0333 (8)0.0505 (10)0.0011 (6)0.0040 (7)0.0052 (7)
C10.0282 (9)0.0412 (10)0.0476 (11)0.0067 (7)0.0031 (8)0.0008 (8)
C20.0270 (8)0.0305 (8)0.0371 (9)0.0010 (6)0.0011 (7)0.0017 (7)
C30.0237 (8)0.0296 (8)0.0374 (9)0.0006 (6)0.0012 (7)0.0023 (7)
C40.0264 (8)0.0324 (9)0.0424 (10)0.0001 (7)0.0008 (7)0.0007 (7)
C50.0288 (9)0.0410 (10)0.0517 (12)0.0062 (7)0.0027 (8)0.0011 (9)
C60.0339 (9)0.0289 (8)0.0406 (10)0.0063 (7)0.0034 (7)0.0019 (7)
C70.0261 (8)0.0269 (8)0.0339 (9)0.0002 (6)0.0009 (7)0.0015 (6)
C80.0258 (11)0.0233 (10)0.0316 (12)0.0000.0020 (9)0.000
C90.0387 (10)0.0270 (8)0.0421 (10)0.0055 (7)0.0003 (8)0.0018 (7)
C100.0296 (8)0.0239 (8)0.0369 (9)0.0001 (6)0.0006 (7)0.0009 (6)
C110.0281 (11)0.0228 (10)0.0323 (12)0.0000.0021 (9)0.000
Geometric parameters (Å, º) top
O1—N11.2285 (19)N5—C61.341 (2)
O2—N11.228 (2)N5—C6i1.341 (2)
O3—C31.235 (2)N5—H50.848 (10)
O4—N21.210 (2)N6—C91.338 (2)
O5—N21.206 (2)N6—C9ii1.338 (2)
O6—N41.227 (2)N6—H60.854 (10)
O7—N41.225 (2)N7—C101.455 (2)
O8—C81.233 (3)C1—C21.356 (2)
O9—N71.223 (2)C1—H1A0.9300
O10—N71.223 (2)C2—C31.457 (2)
O11—C111.237 (3)C3—C41.457 (2)
O1W—H110.851 (9)C4—C51.362 (2)
O1W—H120.858 (9)C5—H5A0.9300
O2W—H210.840 (8)C6—C71.361 (2)
O3W—H310.844 (8)C6—H6A0.9300
N1—C21.457 (2)C7—C81.458 (2)
N2—C41.455 (2)C8—C7i1.458 (2)
N3—C11.338 (3)C9—C101.360 (2)
N3—C51.338 (3)C9—H90.9300
N3—H30.853 (10)C10—C111.454 (2)
N4—C71.455 (2)C11—C10ii1.454 (2)
H11—O1W—H12109.1 (14)O3—C3—C4125.31 (15)
O2—N1—O1123.08 (16)O3—C3—C2124.72 (15)
O2—N1—C2119.15 (14)C4—C3—C2109.97 (14)
O1—N1—C2117.76 (15)C5—C4—N2115.48 (16)
O5—N2—O4121.96 (17)C5—C4—C3123.38 (16)
O5—N2—C4118.53 (17)N2—C4—C3121.12 (15)
O4—N2—C4119.51 (15)N3—C5—C4121.24 (17)
C1—N3—C5120.47 (16)N3—C5—H5A119.4
C1—N3—H3117.6 (16)C4—C5—H5A119.4
C5—N3—H3121.8 (16)N5—C6—C7120.80 (16)
O7—N4—O6123.11 (15)N5—C6—H6A119.6
O7—N4—C7118.20 (15)C7—C6—H6A119.6
O6—N4—C7118.66 (14)C6—C7—N4115.51 (15)
C6—N5—C6i120.6 (2)C6—C7—C8124.09 (16)
C6—N5—H5119.71 (10)N4—C7—C8120.39 (14)
C6i—N5—H5119.71 (10)O8—C8—C7i125.23 (9)
C9—N6—C9ii120.4 (2)O8—C8—C7125.23 (9)
C9—N6—H6119.82 (11)C7i—C8—C7109.54 (19)
C9ii—N6—H6119.82 (10)N6—C9—C10120.94 (17)
O10—N7—O9123.05 (16)N6—C9—H9119.5
O10—N7—C10118.79 (14)C10—C9—H9119.5
O9—N7—C10118.16 (16)C9—C10—C11124.11 (16)
N3—C1—C2120.99 (17)C9—C10—N7114.74 (15)
N3—C1—H1A119.5C11—C10—N7121.15 (14)
C2—C1—H1A119.5O11—C11—C10ii125.25 (9)
C1—C2—N1115.69 (15)O11—C11—C10125.25 (9)
C1—C2—C3123.94 (16)C10ii—C11—C10109.50 (19)
N1—C2—C3120.36 (14)
C5—N3—C1—C20.1 (3)C6i—N5—C6—C71.47 (13)
N3—C1—C2—N1179.48 (18)N5—C6—C7—N4176.15 (14)
N3—C1—C2—C30.5 (3)N5—C6—C7—C83.0 (3)
O2—N1—C2—C1152.19 (18)O7—N4—C7—C626.7 (2)
O1—N1—C2—C127.0 (3)O6—N4—C7—C6151.55 (18)
O2—N1—C2—C328.8 (3)O7—N4—C7—C8154.12 (15)
O1—N1—C2—C3151.95 (18)O6—N4—C7—C827.7 (2)
C1—C2—C3—O3179.23 (19)C6—C7—C8—O8178.50 (13)
N1—C2—C3—O30.3 (3)N4—C7—C8—O82.34 (18)
C1—C2—C3—C40.1 (3)C6—C7—C8—C7i1.50 (13)
N1—C2—C3—C4179.00 (16)N4—C7—C8—C7i177.66 (18)
O5—N2—C4—C516.1 (3)C9ii—N6—C9—C100.98 (13)
O4—N2—C4—C5164.46 (19)N6—C9—C10—C112.0 (3)
O5—N2—C4—C3162.5 (3)N6—C9—C10—N7177.52 (15)
O4—N2—C4—C316.9 (3)O10—N7—C10—C9152.08 (18)
O3—C3—C4—C5179.9 (2)O9—N7—C10—C927.5 (3)
C2—C3—C4—C50.7 (3)O10—N7—C10—C1127.5 (2)
O3—C3—C4—N21.4 (3)O9—N7—C10—C11152.96 (17)
C2—C3—C4—N2179.23 (17)C9—C10—C11—O11179.01 (13)
C1—N3—C5—C40.7 (3)N7—C10—C11—O111.48 (19)
N2—C4—C5—N3179.75 (19)C9—C10—C11—C10ii0.99 (13)
C3—C4—C5—N31.2 (3)N7—C10—C11—C10ii178.52 (19)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1w0.85 (1)1.86 (1)2.703 (2)172 (2)
N5—H5···O2w0.85 (1)1.84 (1)2.692 (3)180
N6—H6···O3w0.85 (1)1.87 (1)2.723 (3)180
O1w—H11···O8iii0.85 (1)2.04 (1)2.878 (2)168 (2)
O1w—H12···O11iv0.86 (1)2.02 (1)2.866 (2)168 (2)
O2w—H21···O3v0.84 (1)2.05 (1)2.888 (2)173 (1)
O3w—H31···O30.84 (1)2.05 (1)2.890 (2)172 (2)
Symmetry codes: (iii) x+3/2, y+3/2, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H3N3O5·H2O
Mr203.12
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)21.728 (2), 21.654 (2), 6.5713 (5)
V3)3091.7 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.45 × 0.45 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21800, 3555, 2852
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.08
No. of reflections3555
No. of parameters281
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1w0.85 (1)1.86 (1)2.703 (2)172 (2)
N5—H5···O2w0.85 (1)1.84 (1)2.692 (3)180
N6—H6···O3w0.85 (1)1.87 (1)2.723 (3)180
O1w—H11···O8i0.85 (1)2.04 (1)2.878 (2)168 (2)
O1w—H12···O11ii0.86 (1)2.02 (1)2.866 (2)168 (2)
O2w—H21···O3iii0.84 (1)2.05 (1)2.888 (2)173 (1)
O3w—H31···O30.84 (1)2.05 (1)2.890 (2)172 (2)
Symmetry codes: (i) x+3/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Jingning Normal College, Shaanxi Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJones, P. G. (2001). Acta Cryst. C57, 880–882.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds