Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Large single crystals of the incongruently melting compound tribarium dichromium octa­oxide, Ba3Cr2O8, were grown by the traveling solvent floating-zone technique for the first time and characterized by X-ray diffraction at room temperature. The structure is composed of CrO43- tetra­hedra and Ba2+ ions. The chromium ions are found in the rare +5 valence state and form double-layered triangular lattices, which are stacked along the c axis with threefold periodicity. All atoms lie on special positions. One Ba, one O and the Cr atoms have site symmetry 3m, the other Ba atom has site symmetry \overline{3}m, and the other O atom has site symmetry m. Magnetic measurements suggest that this material is a spin dimer system with a spin-singlet ground state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057583/pk2063sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057583/pk2063Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](r-O) = 0.001 Å
  • R factor = 0.021
  • wR factor = 0.051
  • Data-to-parameter ratio = 48.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT731_ALERT_1_C Bond Calc 2.9267(5), Rep 2.9268(2) ...... 2.50 su-Ra BA2 -O1 1.555 7.454 PLAT731_ALERT_1_C Bond Calc 2.9267(5), Rep 2.9268(2) ...... 2.50 su-Ra BA2 -O1 1.555 7.344 PLAT731_ALERT_1_C Bond Calc 2.9267(6), Rep 2.9268(2) ...... 3.00 su-Ra BA2 -O1 1.555 9.564 PLAT731_ALERT_1_C Bond Calc 2.9267(7), Rep 2.9268(2) ...... 3.50 su-Ra BA2 -O1 1.555 8.544 PLAT731_ALERT_1_C Bond Calc 2.9267(7), Rep 2.9268(2) ...... 3.50 su-Ra BA2 -O1 1.555 8.444 PLAT731_ALERT_1_C Bond Calc 2.9267(6), Rep 2.9268(2) ...... 3.00 su-Ra BA2 -O1 1.555 9.554 PLAT731_ALERT_1_C Bond Calc 2.9267(5), Rep 2.9268(2) ...... 2.50 su-Ra O1 -BA2 1.555 13.545 PLAT731_ALERT_1_C Bond Calc 2.9267(5), Rep 2.9268(2) ...... 2.50 su-Ra O1 -BA2 1.555 13.655
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cr1 (5) 4.66
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The system Ba3Cr2O8 was recently synthesized in polycrystalline form to study its magnetic properties (Nakajima et al., 2006). Susceptibility and high-field magnetization measurements have provided evidence that this material is a new spin dimer system. The interesting magnetic properties observed motivated our growth of large single crystals up to 6 mm x 4 mm x 1 mm in size. Fig.1 shows the structure of Ba3Cr2O8, which consists of a series of CrO43- tetrahedra and Ba2+ ions.

Smaller single crystals of Ba3Cr2O8 (suitable for X-ray work) were previously grown using a flux method (Mattausch and Muller-Buschbaum, 1972), but the magnetic properties of these crystals were never investigated. The authors did solve the crystallographic structure, but the reported R values were quite high (> 0.08) and both the isotropic and anisotropic displacement parameters were not presented. It follows that the purpose of this work is to present a more accurate and complete solution of the crystallographic structure of this system. This work also proves that single crystals of materials containing the difficult-to-stabilize Cr5+ ion can be grown by the traveling solvent floating zone technique.

Related literature top

For details of the first single-crystal growth of Ba3Cr2O8 (X-ray size crystals), see Mattausch & Muller-Buschbaum (1972). For a more recent synthesis of Ba3Cr2O8 and some measurements of magnetic properties, see Nakajima et al. (2006). Additional details describing the growth of large single crystals by the traveling solvent floating-zone method and subsequent magnetic characterization measurements, see Aczel et al. (2007).

Experimental top

Large single crystals of the title compound were grown by the traveling solvent floating zone method in an Ar enviroment, using BaCO3 and Cr2O3 as starting materials. The growth rate was fast (both 27 mm/h and 18 mm/h were applied), which was necessary to maintain zone stability. The feed and seed rods were rotating in opposite directions at 20 rpm throughout the growth, and a 3 cm boule of the desired Ba3Cr2O8 phase was obtained on the seed rod. Due to the very fast growth, the as-obtained boule consisted of many well oriented crystalline grains.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: GRETEP (Laugier & Bochu, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. 50% displacement ellipsoid plot of the unit cell. Ba ions are shown in dark blue, Cr ions are shown in blue, and O ions are shown in red.
tribarium dichromium octaoxide top
Crystal data top
Ba3Cr2O8Dx = 5.248 Mg m3
Mr = 644.02Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 2788 reflections
Hall symbol: -R 3 2"θ = 2.9–42.1°
a = 5.7450 (2) ŵ = 16.87 mm1
c = 21.3883 (10) ÅT = 296 K
V = 611.35 (4) Å3Rod, blue
Z = 30.30 × 0.05 × 0.02 mm
F(000) = 840
Data collection top
Bruker APEXII CCD area-detector
diffractometer
928 independent reflections
Radiation source: fine-focus sealed tube779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 52.2°, θmin = 2.9°
Absorption correction: numerical
(face correction; APEX2; Bruker, 2006)
h = 812
Tmin = 0.38, Tmax = 0.77k = 1210
9434 measured reflectionsl = 4746
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0269P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.07Δρmax = 1.98 e Å3
928 reflectionsΔρmin = 2.01 e Å3
19 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0065 (3)
Crystal data top
Ba3Cr2O8Z = 3
Mr = 644.02Mo Kα radiation
Trigonal, R3mµ = 16.87 mm1
a = 5.7450 (2) ÅT = 296 K
c = 21.3883 (10) Å0.30 × 0.05 × 0.02 mm
V = 611.35 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
928 independent reflections
Absorption correction: numerical
(face correction; APEX2; Bruker, 2006)
779 reflections with I > 2σ(I)
Tmin = 0.38, Tmax = 0.77Rint = 0.034
9434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02119 parameters
wR(F2) = 0.0510 restraints
S = 1.07Δρmax = 1.98 e Å3
928 reflectionsΔρmin = 2.01 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.00000.00000.00000.01420 (5)
Ba20.00000.00000.205924 (6)0.00918 (5)
Cr10.00000.00000.407042 (18)0.00721 (6)
O10.82832 (9)0.17168 (9)0.89871 (5)0.01272 (17)
O20.00000.00000.32872 (9)0.0273 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01762 (7)0.01762 (7)0.00736 (7)0.00881 (3)0.0000.000
Ba20.00956 (5)0.00956 (5)0.00841 (6)0.00478 (3)0.0000.000
Cr10.00723 (8)0.00723 (8)0.00718 (11)0.00361 (4)0.0000.000
O10.0143 (3)0.0143 (3)0.0137 (4)0.0102 (3)0.00047 (14)0.00047 (14)
O20.0366 (8)0.0366 (8)0.0085 (7)0.0183 (4)0.0000.000
Geometric parameters (Å, º) top
Ba1—O1i2.7589 (10)Ba2—Cr1xix3.5101 (2)
Ba1—O1ii2.7589 (10)Ba2—Cr1xx3.5101 (2)
Ba1—O1iii2.7589 (10)Cr1—O21.675 (2)
Ba1—O1iv2.7589 (10)Cr1—O1xxi1.7133 (9)
Ba1—O1v2.7589 (10)Cr1—O1xxii1.7133 (9)
Ba1—O1vi2.7589 (10)Cr1—O1xxiii1.7134 (9)
Ba1—O2vii3.3183 (1)Cr1—Ba2xx3.5101 (2)
Ba1—O2viii3.3183 (1)Cr1—Ba2xxiv3.5101 (2)
Ba1—O2ix3.3183 (1)Cr1—Ba2xix3.5101 (2)
Ba1—O2x3.3183 (1)Cr1—Ba1xxv3.6724 (2)
Ba1—O2xi3.3184 (1)Cr1—Ba1xxvi3.6724 (2)
Ba1—O2xii3.3184 (1)Cr1—Ba1xxvii3.6725 (2)
Ba2—O22.626 (2)Cr1—Cr1xxiv4.5764 (6)
Ba2—O1i2.8155 (10)Cr1—Cr1xx4.5764 (6)
Ba2—O1v2.8155 (10)O2—Ba1xxvi3.3183 (1)
Ba2—O1iii2.8155 (10)O2—Ba1xxv3.3183 (1)
Ba2—O1xiii2.9268 (2)O2—Ba1xxvii3.3184 (1)
Ba2—O1xiv2.9268 (2)O1—Cr1xxiii1.7133 (9)
Ba2—O1xv2.9268 (2)O1—Ba1xxviii2.7589 (10)
Ba2—O1xvi2.9268 (2)O1—Ba2i2.8155 (10)
Ba2—O1xvii2.9268 (2)O1—Ba2xxix2.9268 (2)
Ba2—O1xviii2.9268 (2)O1—Ba2xxx2.9268 (2)
O1i—Ba1—O1ii180.00 (3)O1xvi—Ba2—O1xviii56.85 (4)
O1i—Ba1—O1iii64.86 (3)O1xvii—Ba2—O1xviii116.445 (13)
O1ii—Ba1—O1iii115.14 (3)O2—Ba2—Cr1xix70.902 (7)
O1i—Ba1—O1iv115.14 (3)O1i—Ba2—Cr1xix71.74 (2)
O1ii—Ba1—O1iv64.86 (3)O1v—Ba2—Cr1xix123.145 (7)
O1iii—Ba1—O1iv180.00 (3)O1iii—Ba2—Cr1xix123.145 (7)
O1i—Ba1—O1v64.86 (3)O1xiii—Ba2—Cr1xix87.343 (18)
O1ii—Ba1—O1v115.14 (3)O1xiv—Ba2—Cr1xix87.343 (18)
O1iii—Ba1—O1v64.86 (3)O1xv—Ba2—Cr1xix137.11 (2)
O1iv—Ba1—O1v115.14 (3)O1xvi—Ba2—Cr1xix29.108 (18)
O1i—Ba1—O1vi115.14 (3)O1xvii—Ba2—Cr1xix137.11 (2)
O1ii—Ba1—O1vi64.86 (3)O1xviii—Ba2—Cr1xix29.109 (18)
O1iii—Ba1—O1vi115.14 (3)O2—Ba2—Cr1xx70.900 (7)
O1iv—Ba1—O1vi64.86 (3)O1i—Ba2—Cr1xx123.146 (7)
O1v—Ba1—O1vi180.00 (3)O1v—Ba2—Cr1xx123.146 (7)
O1i—Ba1—O2vii70.56 (3)O1iii—Ba2—Cr1xx71.74 (2)
O1ii—Ba1—O2vii109.44 (3)O1xiii—Ba2—Cr1xx29.109 (18)
O1iii—Ba1—O2vii70.56 (3)O1xiv—Ba2—Cr1xx137.11 (2)
O1iv—Ba1—O2vii109.44 (3)O1xv—Ba2—Cr1xx29.109 (18)
O1v—Ba1—O2vii126.55 (4)O1xvi—Ba2—Cr1xx87.343 (18)
O1vi—Ba1—O2vii53.45 (4)O1xvii—Ba2—Cr1xx87.343 (18)
O1i—Ba1—O2viii70.56 (3)O1xviii—Ba2—Cr1xx137.11 (2)
O1ii—Ba1—O2viii109.44 (3)Cr1xix—Ba2—Cr1xx109.841 (7)
O1iii—Ba1—O2viii126.55 (4)O2—Cr1—O1xxi110.14 (4)
O1iv—Ba1—O2viii53.45 (4)O2—Cr1—O1xxii110.14 (4)
O1v—Ba1—O2viii70.56 (3)O1xxi—Cr1—O1xxii108.80 (4)
O1vi—Ba1—O2viii109.44 (3)O2—Cr1—O1xxiii110.14 (4)
O2vii—Ba1—O2viii119.913 (4)O1xxi—Cr1—O1xxiii108.79 (4)
O1i—Ba1—O2ix109.44 (3)O1xxii—Cr1—O1xxiii108.79 (4)
O1ii—Ba1—O2ix70.56 (3)O2—Cr1—Ba2xx109.099 (7)
O1iii—Ba1—O2ix53.45 (4)O1xxi—Cr1—Ba2xx56.202 (7)
O1iv—Ba1—O2ix126.55 (4)O1xxii—Cr1—Ba2xx140.76 (4)
O1v—Ba1—O2ix109.44 (3)O1xxiii—Cr1—Ba2xx56.204 (7)
O1vi—Ba1—O2ix70.56 (3)O2—Cr1—Ba2xxiv109.099 (7)
O2vii—Ba1—O2ix60.087 (4)O1xxi—Cr1—Ba2xxiv140.76 (4)
O2viii—Ba1—O2ix180.00 (7)O1xxii—Cr1—Ba2xxiv56.202 (7)
O1i—Ba1—O2x109.44 (3)O1xxiii—Cr1—Ba2xxiv56.204 (7)
O1ii—Ba1—O2x70.56 (3)Ba2xx—Cr1—Ba2xxiv109.842 (7)
O1iii—Ba1—O2x109.44 (3)O2—Cr1—Ba2xix109.098 (7)
O1iv—Ba1—O2x70.56 (3)O1xxi—Cr1—Ba2xix56.205 (7)
O1v—Ba1—O2x53.45 (4)O1xxii—Cr1—Ba2xix56.205 (7)
O1vi—Ba1—O2x126.55 (4)O1xxiii—Cr1—Ba2xix140.76 (4)
O2vii—Ba1—O2x180.00 (7)Ba2xx—Cr1—Ba2xix109.841 (7)
O2viii—Ba1—O2x60.087 (4)Ba2xxiv—Cr1—Ba2xix109.841 (7)
O2ix—Ba1—O2x119.913 (4)O2—Cr1—Ba1xxv64.579 (6)
O1i—Ba1—O2xi126.55 (4)O1xxi—Cr1—Ba1xxv124.876 (11)
O1ii—Ba1—O2xi53.45 (4)O1xxii—Cr1—Ba1xxv45.56 (4)
O1iii—Ba1—O2xi70.56 (3)O1xxiii—Cr1—Ba1xxv124.874 (11)
O1iv—Ba1—O2xi109.44 (3)Ba2xx—Cr1—Ba1xxv173.677 (12)
O1v—Ba1—O2xi70.56 (3)Ba2xxiv—Cr1—Ba1xxv73.364 (2)
O1vi—Ba1—O2xi109.44 (3)Ba2xix—Cr1—Ba1xxv73.365 (2)
O2vii—Ba1—O2xi119.912 (4)O2—Cr1—Ba1xxvi64.579 (6)
O2viii—Ba1—O2xi119.912 (4)O1xxi—Cr1—Ba1xxvi45.56 (4)
O2ix—Ba1—O2xi60.088 (4)O1xxii—Cr1—Ba1xxvi124.876 (11)
O2x—Ba1—O2xi60.088 (4)O1xxiii—Cr1—Ba1xxvi124.874 (11)
O1i—Ba1—O2xii53.45 (4)Ba2xx—Cr1—Ba1xxvi73.364 (2)
O1ii—Ba1—O2xii126.55 (4)Ba2xxiv—Cr1—Ba1xxvi173.677 (12)
O1iii—Ba1—O2xii109.44 (3)Ba2xix—Cr1—Ba1xxvi73.365 (2)
O1iv—Ba1—O2xii70.56 (3)Ba1xxv—Cr1—Ba1xxvi102.921 (7)
O1v—Ba1—O2xii109.44 (3)O2—Cr1—Ba1xxvii64.579 (6)
O1vi—Ba1—O2xii70.56 (3)O1xxi—Cr1—Ba1xxvii124.873 (11)
O2vii—Ba1—O2xii60.088 (4)O1xxii—Cr1—Ba1xxvii124.873 (11)
O2viii—Ba1—O2xii60.088 (4)O1xxiii—Cr1—Ba1xxvii45.56 (4)
O2ix—Ba1—O2xii119.912 (4)Ba2xx—Cr1—Ba1xxvii73.365 (2)
O2x—Ba1—O2xii119.912 (4)Ba2xxiv—Cr1—Ba1xxvii73.365 (2)
O2xi—Ba1—O2xii180.00 (7)Ba2xix—Cr1—Ba1xxvii173.678 (12)
O2—Ba2—O1i142.65 (2)Ba1xxv—Cr1—Ba1xxvii102.920 (7)
O2—Ba2—O1v142.64 (2)Ba1xxvi—Cr1—Ba1xxvii102.920 (7)
O1i—Ba2—O1v63.40 (3)O2—Cr1—Cr1xxiv46.451 (7)
O2—Ba2—O1iii142.64 (2)O1xxi—Cr1—Cr1xxiv156.59 (4)
O1i—Ba2—O1iii63.40 (3)O1xxii—Cr1—Cr1xxiv84.09 (3)
O1v—Ba2—O1iii63.40 (3)O1xxiii—Cr1—Cr1xxiv84.09 (3)
O2—Ba2—O1xiii78.99 (2)Ba2xx—Cr1—Cr1xxiv124.602 (5)
O1i—Ba2—O1xiii99.33 (2)Ba2xxiv—Cr1—Cr1xxiv62.648 (3)
O1v—Ba2—O1xiii131.476 (10)Ba2xix—Cr1—Cr1xxiv124.602 (5)
O1iii—Ba2—O1xiii68.34 (4)Ba1xxv—Cr1—Cr1xxiv51.460 (3)
O2—Ba2—O1xiv78.99 (2)Ba1xxvi—Cr1—Cr1xxiv111.030 (13)
O1i—Ba2—O1xiv99.33 (2)Ba1xxvii—Cr1—Cr1xxiv51.460 (3)
O1v—Ba2—O1xiv68.34 (4)O2—Cr1—Cr1xx46.451 (7)
O1iii—Ba2—O1xiv131.476 (10)O1xxi—Cr1—Cr1xx84.09 (3)
O1xiii—Ba2—O1xiv157.90 (4)O1xxii—Cr1—Cr1xx156.59 (4)
O2—Ba2—O1xv78.99 (2)O1xxiii—Cr1—Cr1xx84.09 (3)
O1i—Ba2—O1xv131.476 (10)Ba2xx—Cr1—Cr1xx62.648 (3)
O1v—Ba2—O1xv99.33 (2)Ba2xxiv—Cr1—Cr1xx124.602 (5)
O1iii—Ba2—O1xv68.34 (4)Ba2xix—Cr1—Cr1xx124.602 (5)
O1xiii—Ba2—O1xv56.85 (4)Ba1xxv—Cr1—Cr1xx111.030 (13)
O1xiv—Ba2—O1xv116.445 (13)Ba1xxvi—Cr1—Cr1xx51.460 (3)
O2—Ba2—O1xvi78.99 (2)Ba1xxvii—Cr1—Cr1xx51.460 (4)
O1i—Ba2—O1xvi68.34 (4)Cr1xxiv—Cr1—Cr1xx77.758 (11)
O1v—Ba2—O1xvi131.476 (10)Cr1—O2—Ba2180.0
O1iii—Ba2—O1xvi99.33 (2)Cr1—O2—Ba1xxvi88.29 (4)
O1xiii—Ba2—O1xvi60.73 (4)Ba2—O2—Ba1xxvi91.71 (4)
O1xiv—Ba2—O1xvi116.445 (13)Cr1—O2—Ba1xxv88.29 (4)
O1xv—Ba2—O1xvi116.445 (13)Ba2—O2—Ba1xxv91.71 (4)
O2—Ba2—O1xvii78.99 (2)Ba1xxvi—O2—Ba1xxv119.913 (4)
O1i—Ba2—O1xvii131.475 (10)Cr1—O2—Ba1xxvii88.29 (4)
O1v—Ba2—O1xvii68.34 (4)Ba2—O2—Ba1xxvii91.71 (4)
O1iii—Ba2—O1xvii99.33 (2)Ba1xxvi—O2—Ba1xxvii119.912 (4)
O1xiii—Ba2—O1xvii116.445 (13)Ba1xxv—O2—Ba1xxvii119.912 (4)
O1xiv—Ba2—O1xvii56.85 (4)Cr1xxiii—O1—Ba1xxviii108.12 (5)
O1xv—Ba2—O1xvii60.73 (4)Cr1xxiii—O1—Ba2i147.49 (5)
O1xvi—Ba2—O1xvii157.90 (4)Ba1xxviii—O1—Ba2i104.39 (3)
O2—Ba2—O1xviii78.99 (2)Cr1xxiii—O1—Ba2xxix94.688 (19)
O1i—Ba2—O1xviii68.34 (4)Ba1xxviii—O1—Ba2xxix98.010 (19)
O1v—Ba2—O1xviii99.33 (2)Ba2i—O1—Ba2xxix80.67 (2)
O1iii—Ba2—O1xviii131.476 (10)Cr1xxiii—O1—Ba2xxx94.688 (19)
O1xiii—Ba2—O1xviii116.445 (13)Ba1xxviii—O1—Ba2xxx98.009 (19)
O1xiv—Ba2—O1xviii60.73 (4)Ba2i—O1—Ba2xxx80.67 (2)
O1xv—Ba2—O1xviii157.90 (4)Ba2xxix—O1—Ba2xxx157.90 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1; (iii) y, x+y+1, z+1; (iv) y, xy1, z1; (v) xy1, x1, z+1; (vi) x+y+1, x+1, z1; (vii) x+2/3, y+1/3, z+1/3; (viii) x1/3, y2/3, z+1/3; (ix) x+1/3, y+2/3, z1/3; (x) x2/3, y1/3, z1/3; (xi) x1/3, y+1/3, z+1/3; (xii) x+1/3, y1/3, z1/3; (xiii) x1/3, y+1/3, z2/3; (xiv) x4/3, y2/3, z2/3; (xv) x+y+2/3, x+4/3, z2/3; (xvi) y+2/3, xy2/3, z2/3; (xvii) y1/3, xy2/3, z2/3; (xviii) x+y+2/3, x+1/3, z2/3; (xix) x+1/3, y1/3, z+2/3; (xx) x+1/3, y+2/3, z+2/3; (xxi) xy1/3, x2/3, z+4/3; (xxii) y1/3, x+y+1/3, z+4/3; (xxiii) x+2/3, y+1/3, z+4/3; (xxiv) x2/3, y1/3, z+2/3; (xxv) x1/3, y2/3, z+1/3; (xxvi) x+2/3, y+1/3, z+1/3; (xxvii) x1/3, y+1/3, z+1/3; (xxviii) x+1, y, z+1; (xxix) x+1/3, y1/3, z+2/3; (xxx) x+4/3, y+2/3, z+2/3.

Experimental details

Crystal data
Chemical formulaBa3Cr2O8
Mr644.02
Crystal system, space groupTrigonal, R3m
Temperature (K)296
a, c (Å)5.7450 (2), 21.3883 (10)
V3)611.35 (4)
Z3
Radiation typeMo Kα
µ (mm1)16.87
Crystal size (mm)0.30 × 0.05 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
(face correction; APEX2; Bruker, 2006)
Tmin, Tmax0.38, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
9434, 928, 779
Rint0.034
(sin θ/λ)max1)1.112
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.07
No. of reflections928
No. of parameters19
Δρmax, Δρmin (e Å3)1.98, 2.01

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), GRETEP (Laugier & Bochu, 2003), SHELXTL (Sheldrick, 1997b).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds