research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 420-423

Crystal structure of the salt bis­­(tri­ethano­lamine-κ3N,O,O′)cobalt(II) bis­­[2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate]

CROSSMARK_Color_square_no_text.svg

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan, and bKarakalpak State University, Nukus str. Abdirova 1, Karakalpakstan 742012, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by T. J. Prior, University of Hull, England (Received 7 February 2016; accepted 18 February 2016; online 24 February 2016)

The reaction of 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetic acid (NBTA) and tri­ethano­lamine (TEA) with Co(NO3)2 results in the formation of the title complex, [Co(C6H15NO3)2](C9H6NO3S)2, which is formed as a result of the association of bis­(tri­ethano­lamine)­cobalt(II) and 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate units. It crystallizes in the monoclinic centrosymmetric space group P21/c, with the CoII ion situated on an inversion centre. In the complex cation, the CoII ion is octa­hedrally coordinated by two N,O,O′-tridentate TEA mol­ecules with a facial distribution and the N atoms in a trans arrangement. Two ethanol groups of each TEA mol­ecule form two five-membered chelate rings around the CoII ion, while the third ethanol group does not coordinate to the metal. The free and coordinating hy­droxy groups of the TEA mol­ecules are involved in hydrogen bonding with the O atoms of NBTA anions, forming an infinite two-dimensional network extending parallel to the bc plane.

1. Chemical context

Tri­ethano­lamine (TEA) is used as a corrosion inhibitor in metal-cutting fluids, as a curing agent for ep­oxy and rubber polymers, adhesives and anti­static agents and as a pharmaceutical inter­mediate and an ointment emulsifier etc. However, TEA is not a substance possessing a specific physiological action (Beyer et al., 1983[Beyer, K. H., Bergfeld, W. F., Berndt, W. O., Boutwell, R. K., Carlton, W. W., Hoffmann, D. K. & Schroeder, A. L. (1983). J. Am. Coll. Toxicol. 2, 183-235.]; Knaak et al., 1997[Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1-86.]) with exception of its low anti­bacterial activity. Benzo­thia­zole is a precursor for rubber accelerators, a component of cyanine dyes, a slimicide in the paper and pulp industry, and is used in the production of certain fungicides, herbicides, anti­fungal agents and pharmaceuticals (Bellavia et al., 2000[Bellavia, V., Natangelo, M., Fanelli, R. & Rotilio, D. (2000). J. Agric. Food Chem. 48, 1239-1242.]; Seo et al., 2000[Seo, K. W., Park, M., Kim, J. G., Kim, T. W. & $ Kim, H. J. (2000). J. Appl. Toxicol. 20, 427-430.]). The inter­action of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al., 2014[Kumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186-1198.]), bidentate (Kapteijn et al., 1997[Kapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Koten, G. V., Smeets, W. J. J., Kooijman, H. & Spek, A. L. (1997). Chem. Ber. Recl, 130, 35-44.]), tridentate (Gao et al., 2004[Gao, S., Liu, J.-W., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m462-m464.]; Ucar et al., 2004[Ucar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322-m324.]; Topcu et al., 2001[Topcu, Y., Yilmaz, V. T. & Thöne, C. (2001). Acta Cryst. E57, m600-m602.]; Krabbes et al., 1999[Krabbes, I., Seichter, W., Breuning, T., Otschik, P. & Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562-1565.]; Haukka et al., 2005[Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746-m2748.]; Yeşilel et al., 2004[Yeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228-m230.]; Mirskova et al., 2013[Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34-38.]) and tetra­dentate binding (Zaitsev et al., 2014[Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605-6609.]; Kazak et al., 2003[Kazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351-356.]; Yilmaz et al., 2004[Yilmaz, V. T., Senel, E. & Thöne, C. (2004). Transition Met. Chem. 29, 336-342.]; Langley et al., 2011[Langley, S. K., Chilton, N. F., Moubaraki, B. & Murray, K. S. (2011). Dalton Trans. 40, 12201-12209.]; Rickard et al., 1999[Rickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 837-838.]; Maestri & Brown, 2004[Maestri, A. G. & Brown, S. N. (2004). Inorg. Chem. 43, 6995-7004.]; Kovbasyuk et al., 2001[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Chun, H., Bernal, I., Reedijk, J., Albada, G. V. & Skelton, B. W. (2001). Cryst. Eng. 4, 201-213.]; Tudor et al., 2001[Tudor, V., Kravtsov, V., Julve, M., Lloret, F., Simonov, Y. A., Lipkowski, J., Buculei, V. & Andruh, M. (2001). Polyhedron, 20, 3033-3037.]). In some complexes, TEA can show bridging properties (Atria et al., 2015[Atria, A. M., Parada, J., Garland, M. T. & Baggio, R. (2015). J. Chil. Chem. Soc. 60, 3059-3062.]; Wittick et al., 2006[Wittick, L. M., Jones, L. F., Jensen, P., Moubaraki, B., Spiccia, L., Berry, K. J. & Murray, K. S. (2006). Dalton Trans. pp. 1534-1543.]; Sharma et al., 2014[Sharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574-583.]; Yang et al., 2014[Yang, D., Liang, Y., Ma, P., Li, S., Wang, J. & Niu, J. (2014). CrystEngComm, 16, 8041-8046.]; Funes et al., 2014[Funes, A. V., Carrella, L., Rentschler, E. & Alborés, P. (2014). Dalton Trans. 43, 2361-2364.]). Here, we report the synthesis and structure of the title compound, [Co(C6H15NO3)2](C9H6NO3S)2, (I).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I) is shown in Fig. 1[link]. The structure consists of a complex cation and one 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anion. The asymmetric unit contains a half of the cationic moiety because the CoII ion is located on an inversion centre. The cation and anion are linked by an O6—H6⋯O2 hydrogen bond (Table 1[link]). In the cationic complex, the CoII ion is coordinated by four oxygen and two nitro­gen atoms of two ligands. The nitro­gen atoms occupy trans positions of the coordination polyhedron. The Co—N bond lengths [2.151 (3) Å] are equal as a result of symmetry, and the N—Co—N bond angle is 180°. The Co—O distances are 2.097 (2) Å and 2.101 (3) Å. One hy­droxy group of each ethanol substituent is not involved in the coordination and is directed away from the coordination centre. The N—Co—O bond angles range from 81.60 (10) to 98.40 (10)° and the O—Co—O angles are 89.79 (10) and 90.21 (10)°. Thus, the coordination polyhedron of the central atom is a slightly distorted octa­hedron of the CoN2O4-type. The thia­zoline ring (C1/C6/N1/C7/S1) and the bicyclic benzo­thia­zole unit (N1/S1/C1–C7) are close to planar, the largest deviations from the least-squares planes being 0.019 (2) and 0.028 (4) Å, respectively. The dihedral angle between the plane of the carboxyl­ate group and the benzo­thia­zole ring system is 85.6 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.88 (3) 1.71 (3) 2.572 (4) 166 (3)
O5—H5⋯O3ii 0.86 (1) 1.75 (2) 2.577 (4) 159 (3)
O6—H6⋯O2 0.82 1.88 2.697 (4) 173
C8—H8A⋯O1iii 0.97 2.48 3.432 (6) 167
C12—H12B⋯O6iv 0.97 2.53 3.455 (6) 159
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the atom-labelling scheme. Unlabelled atoms are generated by the inversion centre.

3. Supra­molecular features

The crystal structure of (I) contains an intricate network of inter­molecular O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]). The [Co(TEA)2]2+ cations play an important role in the supra­molecular architecture. Each cation is surrounded by four 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anions. The H atoms of the free hy­droxy group of the TEA ligand form a hydrogen bond with the carboxyl­ate O atom of the NBTA ion while the coordinating hy­droxy H atoms are involved in inter­molecular hydrogen bonding with the carboxyl­ate O atoms of the NBTA ions [H4⋯O2i = 1.71 (3) Å and H5⋯O3ii = 1.752 (17)Å; symmetry codes: (i) x, −1 + y, z; (ii) 2 − x, 1 − y, 2 − z]. In addition, there is weak hydrogen bond between the –CH2 group and the non-coordinating hy­droxy-O atoms of the TEA ligand, with a C⋯O distance of 3.455 (6) Å. The above-mentioned hydrogen bonds give rise to R44(22) and C44(22) graph-set motifs. The crystal structure contains layers of hydrogen-bonded cations that are sandwiched between layers of hydrogen-bonded anions. Each layer extends in the bc plane. There is hydrogen bonding within and between these layers. These are arranged along [100] in the sequence ACA·ACA·ACA (where A = anion layer and C = cation layer; Fig. 2[link]) The NBTA anion layers are not linked by hydrogen bonds, but there are ππ stacking inter­actions between benzene (centroid Cg1) and thia­zolin (centroid Cg2) rings [Cg1⋯Cg2(-x, −y, −z) = 3.71 Å] of adjacent inversion-related mol­ecules (Fig. 3[link]).

[Figure 2]
Figure 2
Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding are not shown.
[Figure 3]
Figure 3
The crystal structure packing of (I). Hydrogen bonds are indicated by black dashed lines and ππ stacking inter­actions by red dashed lines.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) showed that coordination complexes of TEA with many metals including those of the s-, d-, p-, and f-blocks have been reported. Structures containing the bis­(tri­ethano­lamine)­cobalt(II) cation are described in the CSD entries with refcodes ASUGEA, IGALOR, WEPLIN.

5. Synthesis and crystallization

To an aqueous solution (2.5 ml) of Co(NO3)2 (0.091 g, 0.5 mmol) was added slowly an ethanol solution (5 ml) containing TEA (132 µl) and NBTA (0.209 g, 1 mmol) with constant stirring. A light-brown crystalline product was obtained at room temperature by solvent evaporation after four weeks (yield 70%). Elemental analysis calculated for C30H42CoN4O12S2: C, 46.57; H, 5.47; N, 7.24. Found: C, 46.62; H, 5.41; N, 7.19.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The coordinating hy­droxy H atoms of the TEA ligand were located in a difference Fourier map and freely refined. C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.97 Å for aromatic and methyl­ene H, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C6H15NO3)2](C9H6NO3S)2
Mr 773.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.6953 (6), 9.7043 (3), 12.1311 (4)
β (°) 98.513 (4)
V3) 1710.94 (11)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.66
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.280, 0.797
No. of measured, independent and observed [I > 2σ(I)] reflections 7096, 3487, 2693
Rint 0.048
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.175, 1.03
No. of reflections 3487
No. of parameters 230
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.53
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97, SHELXL97 XP and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Tri­ethano­lamine (TEA) is used as a corrosion inhibitor in metal-cutting fluids, as a curing agent for ep­oxy and rubber polymers, adhesives and anti­static agents and as a pharmaceutical inter­mediate and an ointment emulsifier etc. However, TEA is not a substance possessing a specific physiological action (Beyer et al., 1983; Knaak et al., 1997) with exception of its low anti­bacterial activity. Benzo­thia­zole is a precursor for rubber accelerators, a component of cyanine dyes, a slimicide in the paper and pulp industry, and is used in the production of certain fungicides, herbicides, anti­fungal agents and pharmaceuticals (Bellavia et al. 2000; Seo et al. 2000). The inter­action of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al., 2014), bidentate (Kapteijn et al., 1997), tridentate (Gao et al., 2004; Ucar et al., 2004; Topcu et al., 2001; Krabbes et al., 1999; Haukka et al., 2005; Yesilel et al., 2004; Mirskova et al., 2013) and tetra­dentate binding (Zaitsev et al., 2014; Kazak et al., 2003; Yilmaz et al., 2004; Langley et al., 2011; Rickard et al., 1999; Maestri et al., 2004; Kovbasyuk et al., 2001; Tudor et al., 2001). In some complexes, TEA can show bridging properties. (Atria et al., 2015; Wittick et al., 2006; Sharma et al., 2014; Yang et al., 2014; Funes et al., 2014). Here, we report the synthesis and structure of the title compound, [Co(C6H15NO3)2](C9H6NO3S)2.

Structural commentary top

The molecular structure of compound (I) is shown in Fig. 1. The structure consists of a complex cation and two 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anions. The asymmetric unit contains a half of the cationic moiety because the CoII ion is located on an inversion centre. The cation and anion are linked by an O6—H6···O2 hydrogen bond (Table 1). In the cationic complex, the CoII ion is coordinated by four oxygen and two nitro­gen atoms of the ligand. The nitro­gen atoms occupy trans positions of the coordination polyhedron. The Co—N bond lengths [2.151 (3) Å] are equal as a result of symmetry, and the N—Co—N bond angle is 180°. The Co—O distances are 2.097 (2) Å and 2.101 (3) Å. One hy­droxy group of each ethanol substituent is not involved in the coordination and is directed away from the coordination centre. The N—Co—O bond angles range from 81.60 (10) to 98.40 (10)° and the O—Co—O angles are 89.79 (10) and 90.21 (10)°. Thus, the coordination polyhedron of the central atom is a slightly distorted o­cta­hedron of the CoN2O4-type. The thia­zolin ring (C1/C6/N1/C7/S1) and the bicyclic benzo­thia­zole unit (N1/S1/C1–C7) are close to planar, the largest deviations from the least-squares planes being 0.0187 (su?) and 0.0279 (su?) Å, respectively. The dihedral angle between the plane of the carboxyl­ate group and the benzo­thia­zole ring system is 85.61 (su?)°.

Supra­molecular features top

The crystal structure of (I) contains an intricate network of inter­molecular O—H···O and C—H···O hydrogen bonds (Table 1). The [Co(TEA)2]2+ cations play an important role in the supra­molecular architecture. Each cation is surrounded by four 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anions. The H atoms of the free hy­droxy group of the TEA ligand form a hydrogen bond with the carboxyl­ate O atom of the NBTA ion while the coordinating hy­droxy H atoms are involved in inter­molecular hydrogen bonding with the carboxyl­ate O atoms of the NBTA ions [H4···O2i =1.71 (3) Å and H5···O3ii =1.752 (17) Å; symmetry codes: (i) x, −1 + y, z; (ii) 2 − x, 1 − y, 2 − z]. In addition, there is weak hydrogen bond between the –CH2 group and the non-coordinating hy­droxy-O atoms of the TEA ligand, with a C···O distance of 3.455 (6) Å. The above-mentioned hydrogen bonds give rise to R44(22) and C44(22) graph-set motifs. The crystal structure contains layers of hydrogen-bonded cations that are sandwiched between layers of hydrogen-bonded anions. Each layer extends in the bc plane. There is hydrogen bonding within and between these layers. These are arranged along (100) in the sequence ACA·ACA·ACA (where A = anion layer and C = cation layer; Fig. 2) The NBTA anion layers are not linked by hydrogen bonds, but there are ππ stacking inter­actions between benzene (centroid Cg1) and thia­zolin (centroid Cg2) rings [Cg1···Cg2(-x, −y, −z) = 3.71 (su?) Å;] of adjacent inversion-related molecules (Fig. 3).

Database survey top

A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014) showed that coordination complexes of TEA with many metals including those of the s-, d-, p-, and f-blocks have been reported. Structures containing the bis­(tri­ethano­lamine)­cobalt(II) cation are described in the CSD entries with refcodes ASUGEA, IGALOR, WEPLIN.

Synthesis and crystallization top

To an aqueous solution (2.5 ml) of Co(NO3)2 (0.091 g, 0.5 mmol) was added slowly an ethanol solution (5 ml) containing TEA (132 µl) and NBTA (0.209 g, 1 mmol) with constant stirring. A light-brown crystalline product was obtained at room temperature by solvent evaporation after four weeks (yield 70%). Elemental analysis calculated for C30H42CoN4O12S2: C, 46.57; H, 5.47; N, 7.24. Found: C, 46.62; H, 5.41; N, 7.19.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The coordinating hy­droxy H atoms of the TEA ligand were located in a difference Fourier map and freely refined. C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.97 Å for aromatic and methyl­ene H, with Uiso(H) = 1.2Ueq(C).

Structure description top

Tri­ethano­lamine (TEA) is used as a corrosion inhibitor in metal-cutting fluids, as a curing agent for ep­oxy and rubber polymers, adhesives and anti­static agents and as a pharmaceutical inter­mediate and an ointment emulsifier etc. However, TEA is not a substance possessing a specific physiological action (Beyer et al., 1983; Knaak et al., 1997) with exception of its low anti­bacterial activity. Benzo­thia­zole is a precursor for rubber accelerators, a component of cyanine dyes, a slimicide in the paper and pulp industry, and is used in the production of certain fungicides, herbicides, anti­fungal agents and pharmaceuticals (Bellavia et al. 2000; Seo et al. 2000). The inter­action of metal ions with TEA results in the formation of complexes in which TEA demonstrates monodentate (Kumar et al., 2014), bidentate (Kapteijn et al., 1997), tridentate (Gao et al., 2004; Ucar et al., 2004; Topcu et al., 2001; Krabbes et al., 1999; Haukka et al., 2005; Yesilel et al., 2004; Mirskova et al., 2013) and tetra­dentate binding (Zaitsev et al., 2014; Kazak et al., 2003; Yilmaz et al., 2004; Langley et al., 2011; Rickard et al., 1999; Maestri et al., 2004; Kovbasyuk et al., 2001; Tudor et al., 2001). In some complexes, TEA can show bridging properties. (Atria et al., 2015; Wittick et al., 2006; Sharma et al., 2014; Yang et al., 2014; Funes et al., 2014). Here, we report the synthesis and structure of the title compound, [Co(C6H15NO3)2](C9H6NO3S)2.

The molecular structure of compound (I) is shown in Fig. 1. The structure consists of a complex cation and two 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anions. The asymmetric unit contains a half of the cationic moiety because the CoII ion is located on an inversion centre. The cation and anion are linked by an O6—H6···O2 hydrogen bond (Table 1). In the cationic complex, the CoII ion is coordinated by four oxygen and two nitro­gen atoms of the ligand. The nitro­gen atoms occupy trans positions of the coordination polyhedron. The Co—N bond lengths [2.151 (3) Å] are equal as a result of symmetry, and the N—Co—N bond angle is 180°. The Co—O distances are 2.097 (2) Å and 2.101 (3) Å. One hy­droxy group of each ethanol substituent is not involved in the coordination and is directed away from the coordination centre. The N—Co—O bond angles range from 81.60 (10) to 98.40 (10)° and the O—Co—O angles are 89.79 (10) and 90.21 (10)°. Thus, the coordination polyhedron of the central atom is a slightly distorted o­cta­hedron of the CoN2O4-type. The thia­zolin ring (C1/C6/N1/C7/S1) and the bicyclic benzo­thia­zole unit (N1/S1/C1–C7) are close to planar, the largest deviations from the least-squares planes being 0.0187 (su?) and 0.0279 (su?) Å, respectively. The dihedral angle between the plane of the carboxyl­ate group and the benzo­thia­zole ring system is 85.61 (su?)°.

The crystal structure of (I) contains an intricate network of inter­molecular O—H···O and C—H···O hydrogen bonds (Table 1). The [Co(TEA)2]2+ cations play an important role in the supra­molecular architecture. Each cation is surrounded by four 2-(2-oxo-2,3-di­hydro-1,3-benzo­thia­zol-3-yl)acetate anions. The H atoms of the free hy­droxy group of the TEA ligand form a hydrogen bond with the carboxyl­ate O atom of the NBTA ion while the coordinating hy­droxy H atoms are involved in inter­molecular hydrogen bonding with the carboxyl­ate O atoms of the NBTA ions [H4···O2i =1.71 (3) Å and H5···O3ii =1.752 (17) Å; symmetry codes: (i) x, −1 + y, z; (ii) 2 − x, 1 − y, 2 − z]. In addition, there is weak hydrogen bond between the –CH2 group and the non-coordinating hy­droxy-O atoms of the TEA ligand, with a C···O distance of 3.455 (6) Å. The above-mentioned hydrogen bonds give rise to R44(22) and C44(22) graph-set motifs. The crystal structure contains layers of hydrogen-bonded cations that are sandwiched between layers of hydrogen-bonded anions. Each layer extends in the bc plane. There is hydrogen bonding within and between these layers. These are arranged along (100) in the sequence ACA·ACA·ACA (where A = anion layer and C = cation layer; Fig. 2) The NBTA anion layers are not linked by hydrogen bonds, but there are ππ stacking inter­actions between benzene (centroid Cg1) and thia­zolin (centroid Cg2) rings [Cg1···Cg2(-x, −y, −z) = 3.71 (su?) Å;] of adjacent inversion-related molecules (Fig. 3).

A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014) showed that coordination complexes of TEA with many metals including those of the s-, d-, p-, and f-blocks have been reported. Structures containing the bis­(tri­ethano­lamine)­cobalt(II) cation are described in the CSD entries with refcodes ASUGEA, IGALOR, WEPLIN.

Synthesis and crystallization top

To an aqueous solution (2.5 ml) of Co(NO3)2 (0.091 g, 0.5 mmol) was added slowly an ethanol solution (5 ml) containing TEA (132 µl) and NBTA (0.209 g, 1 mmol) with constant stirring. A light-brown crystalline product was obtained at room temperature by solvent evaporation after four weeks (yield 70%). Elemental analysis calculated for C30H42CoN4O12S2: C, 46.57; H, 5.47; N, 7.24. Found: C, 46.62; H, 5.41; N, 7.19.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The coordinating hy­droxy H atoms of the TEA ligand were located in a difference Fourier map and freely refined. C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.97 Å for aromatic and methyl­ene H, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Unlabelled atoms are generated by the inversion centre.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding are not shown.
[Figure 3] Fig. 3. The crystal structure packing of (I). Hydrogen bonds are indicated by black dashed lines and ππ stacking interactions by red dashed lines.
Bis(triethanolamine-κ3N,O,O')cobalt(II) bis[2-(2-oxo-2,3-dihydro-1,3-benzothiazol-3-yl)acetate] top
Crystal data top
[Co(C6H15NO3)2](C9H6NO3S)2F(000) = 810
Mr = 773.73Dx = 1.502 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 1414 reflections
a = 14.6953 (6) Åθ = 3.7–75.3°
b = 9.7043 (3) ŵ = 5.66 mm1
c = 12.1311 (4) ÅT = 293 K
β = 98.513 (4)°Block, dark orange
V = 1710.94 (11) Å30.28 × 0.24 × 0.18 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3487 independent reflections
Radiation source: fine-focus sealed tube2693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.2576 pixels mm-1θmax = 75.8°, θmin = 5.5°
ω scansh = 1817
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
k = 1012
Tmin = 0.280, Tmax = 0.797l = 1215
7096 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.4878P]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.47 e Å3
6 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Co(C6H15NO3)2](C9H6NO3S)2V = 1710.94 (11) Å3
Mr = 773.73Z = 2
Monoclinic, P21/cCu Kα radiation
a = 14.6953 (6) ŵ = 5.66 mm1
b = 9.7043 (3) ÅT = 293 K
c = 12.1311 (4) Å0.28 × 0.24 × 0.18 mm
β = 98.513 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
2693 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.797Rint = 0.048
7096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0616 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
3487 reflectionsΔρmin = 0.53 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00001.00000.0321 (2)
S11.42643 (10)0.51313 (12)1.23063 (9)0.0613 (3)
O41.09939 (16)0.1150 (3)1.1029 (2)0.0405 (6)
H41.1359 (16)0.175 (3)1.078 (2)0.061*
O21.21319 (18)0.7409 (3)1.0090 (3)0.0511 (7)
O50.92168 (17)0.0172 (2)1.1309 (2)0.0397 (6)
H50.8630 (7)0.025 (4)1.130 (2)0.060*
C41.3618 (3)0.3107 (6)0.8983 (4)0.0640 (12)
H4A1.34690.27280.82750.077*
N21.07355 (19)0.1681 (3)1.0879 (2)0.0354 (6)
O61.1297 (3)0.4967 (3)0.9585 (3)0.0719 (11)
H61.15370.57030.97930.108*
O31.25064 (18)0.9228 (3)0.9142 (3)0.0593 (8)
O11.4058 (3)0.7837 (3)1.1993 (3)0.0715 (9)
N11.3885 (2)0.6444 (3)1.0445 (3)0.0432 (7)
C111.0861 (3)0.2771 (4)1.0053 (3)0.0455 (9)
H11A1.02560.30540.96930.055*
H11B1.11760.23630.94840.055*
C11.4051 (2)0.4195 (4)1.1068 (3)0.0441 (8)
C91.2684 (2)0.8119 (4)0.9634 (3)0.0437 (8)
C101.1382 (3)0.4043 (4)1.0483 (3)0.0507 (9)
H10A1.11220.44351.11020.061*
H10B1.20240.38261.07310.061*
C61.3850 (2)0.5060 (4)1.0156 (3)0.0405 (8)
C131.1640 (3)0.1118 (4)1.1391 (4)0.0535 (10)
H13A1.18990.17121.20020.064*
H13B1.20560.11261.08410.064*
C151.0160 (3)0.2213 (4)1.1688 (3)0.0464 (9)
H15A0.97320.28901.13210.056*
H15B1.05510.26721.22920.056*
C81.3671 (3)0.7592 (4)0.9693 (4)0.0500 (10)
H8A1.37710.73140.89520.060*
H8B1.40920.83410.99280.060*
C71.4049 (3)0.6711 (5)1.1570 (4)0.0520 (10)
C121.1576 (3)0.0320 (5)1.1821 (4)0.0542 (11)
H12A1.21860.07251.19620.065*
H12B1.13290.02981.25200.065*
C31.3811 (3)0.2232 (5)0.9886 (4)0.0628 (12)
H31.37830.12830.97810.075*
C51.3638 (3)0.4522 (5)0.9094 (3)0.0522 (10)
H5A1.35120.50950.84750.063*
C21.4045 (3)0.2764 (4)1.0941 (4)0.0540 (10)
H21.41950.21861.15520.065*
C140.9626 (3)0.1087 (4)1.2162 (3)0.0480 (9)
H14A1.00350.05721.27140.058*
H14B0.91480.14951.25300.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0309 (4)0.0303 (4)0.0344 (4)0.0010 (3)0.0022 (3)0.0001 (3)
S10.0879 (9)0.0538 (7)0.0408 (5)0.0058 (5)0.0049 (5)0.0012 (4)
O40.0378 (12)0.0369 (14)0.0464 (13)0.0066 (10)0.0050 (10)0.0020 (11)
O20.0412 (13)0.0348 (14)0.0799 (19)0.0011 (11)0.0180 (13)0.0036 (13)
O50.0371 (12)0.0378 (14)0.0445 (14)0.0006 (10)0.0072 (10)0.0045 (10)
C40.056 (2)0.075 (3)0.058 (3)0.007 (2)0.001 (2)0.025 (2)
N20.0368 (14)0.0308 (15)0.0384 (14)0.0032 (11)0.0050 (11)0.0025 (12)
O60.090 (3)0.048 (2)0.072 (2)0.0219 (16)0.007 (2)0.0152 (16)
O30.0405 (14)0.0499 (18)0.089 (2)0.0076 (13)0.0143 (14)0.0197 (16)
O10.094 (3)0.0485 (19)0.069 (2)0.0017 (17)0.0040 (18)0.0165 (16)
N10.0388 (15)0.0467 (19)0.0439 (16)0.0064 (13)0.0056 (12)0.0039 (14)
C110.052 (2)0.039 (2)0.0442 (19)0.0072 (17)0.0051 (16)0.0020 (16)
C10.0381 (17)0.048 (2)0.046 (2)0.0000 (16)0.0090 (15)0.0006 (17)
C90.0375 (17)0.041 (2)0.052 (2)0.0019 (15)0.0066 (15)0.0002 (17)
C100.057 (2)0.043 (2)0.051 (2)0.0116 (18)0.0041 (18)0.0016 (18)
C60.0294 (15)0.050 (2)0.0422 (19)0.0057 (14)0.0044 (14)0.0037 (16)
C130.041 (2)0.049 (2)0.066 (2)0.0023 (17)0.0108 (18)0.012 (2)
C150.055 (2)0.040 (2)0.045 (2)0.0034 (17)0.0101 (17)0.0086 (17)
C80.0390 (18)0.051 (2)0.062 (2)0.0061 (17)0.0114 (17)0.011 (2)
C70.054 (2)0.047 (2)0.054 (2)0.0028 (18)0.0059 (18)0.003 (2)
C120.055 (2)0.048 (2)0.053 (2)0.0105 (18)0.0121 (19)0.0029 (19)
C30.052 (2)0.051 (3)0.086 (3)0.000 (2)0.014 (2)0.017 (2)
C50.046 (2)0.066 (3)0.043 (2)0.013 (2)0.0007 (17)0.009 (2)
C20.053 (2)0.044 (2)0.067 (3)0.0011 (18)0.014 (2)0.003 (2)
C140.056 (2)0.048 (2)0.0405 (19)0.0068 (18)0.0112 (16)0.0064 (17)
Geometric parameters (Å, º) top
Co1—O42.097 (2)C11—C101.505 (5)
Co1—O4i2.097 (2)C11—H11A0.9700
Co1—O5i2.101 (3)C11—H11B0.9700
Co1—O52.101 (3)C1—C61.386 (5)
Co1—N2i2.151 (3)C1—C21.398 (6)
Co1—N22.151 (3)C9—C81.529 (5)
S1—C11.744 (4)C10—H10A0.9700
S1—C71.779 (5)C10—H10B0.9700
O4—C121.436 (5)C6—C51.382 (5)
O4—H40.875 (9)C13—C121.498 (6)
O2—C91.254 (4)C13—H13A0.9700
O5—C141.427 (4)C13—H13B0.9700
O5—H50.863 (9)C15—C141.509 (5)
C4—C51.380 (7)C15—H15A0.9700
C4—C31.382 (7)C15—H15B0.9700
C4—H4A0.9300C8—H8A0.9700
N2—C151.480 (4)C8—H8B0.9700
N2—C131.486 (5)C12—H12A0.9700
N2—C111.487 (5)C12—H12B0.9700
O6—C101.401 (5)C3—C21.374 (6)
O6—H60.8200C3—H30.9300
O3—C91.239 (5)C5—H5A0.9300
O1—C71.207 (5)C2—H20.9300
N1—C71.374 (5)C14—H14A0.9700
N1—C61.387 (5)C14—H14B0.9700
N1—C81.445 (5)
O4—Co1—O4i179.999 (1)C11—C10—H10A110.6
O4—Co1—O5i89.79 (10)O6—C10—H10B110.6
O4i—Co1—O5i90.21 (10)C11—C10—H10B110.6
O4—Co1—O590.21 (10)H10A—C10—H10B108.7
O4i—Co1—O589.79 (10)C5—C6—C1120.5 (4)
O5i—Co1—O5180.00 (14)C5—C6—N1126.6 (4)
O4—Co1—N2i98.40 (10)C1—C6—N1112.9 (3)
O4i—Co1—N2i81.60 (10)N2—C13—C12112.9 (3)
O5i—Co1—N2i81.74 (10)N2—C13—H13A109.0
O5—Co1—N2i98.26 (10)C12—C13—H13A109.0
O4—Co1—N281.60 (10)N2—C13—H13B109.0
O4i—Co1—N298.40 (10)C12—C13—H13B109.0
O5i—Co1—N298.26 (10)H13A—C13—H13B107.8
O5—Co1—N281.74 (10)N2—C15—C14112.4 (3)
N2i—Co1—N2180.0N2—C15—H15A109.1
C1—S1—C791.15 (19)C14—C15—H15A109.1
C12—O4—Co1113.2 (2)N2—C15—H15B109.1
C12—O4—H4105.5 (16)C14—C15—H15B109.1
Co1—O4—H4124.2 (16)H15A—C15—H15B107.9
C14—O5—Co1112.2 (2)N1—C8—C9113.8 (3)
C14—O5—H5105.9 (15)N1—C8—H8A108.8
Co1—O5—H5130.5 (18)C9—C8—H8A108.8
C5—C4—C3122.3 (4)N1—C8—H8B108.8
C5—C4—H4A118.8C9—C8—H8B108.8
C3—C4—H4A118.8H8A—C8—H8B107.7
C15—N2—C13114.6 (3)O1—C7—N1125.6 (4)
C15—N2—C11109.8 (3)O1—C7—S1125.2 (3)
C13—N2—C11110.5 (3)N1—C7—S1109.2 (3)
C15—N2—Co1107.4 (2)O4—C12—C13110.6 (3)
C13—N2—Co1106.3 (2)O4—C12—H12A109.5
C11—N2—Co1108.0 (2)C13—C12—H12A109.5
C10—O6—H6109.5O4—C12—H12B109.5
C7—N1—C6115.3 (3)C13—C12—H12B109.5
C7—N1—C8118.2 (3)H12A—C12—H12B108.1
C6—N1—C8126.1 (3)C2—C3—C4120.1 (5)
N2—C11—C10117.2 (3)C2—C3—H3120.0
N2—C11—H11A108.0C4—C3—H3120.0
C10—C11—H11A108.0C4—C5—C6117.7 (4)
N2—C11—H11B108.0C4—C5—H5A121.1
C10—C11—H11B108.0C6—C5—H5A121.1
H11A—C11—H11B107.2C3—C2—C1118.2 (4)
C6—C1—C2121.1 (4)C3—C2—H2120.9
C6—C1—S1111.2 (3)C1—C2—H2120.9
C2—C1—S1127.6 (3)O5—C14—C15111.2 (3)
O3—C9—O2125.8 (3)O5—C14—H14A109.4
O3—C9—C8116.4 (3)C15—C14—H14A109.4
O2—C9—C8117.8 (3)O5—C14—H14B109.4
O6—C10—C11105.9 (3)C15—C14—H14B109.4
O6—C10—H10A110.6H14A—C14—H14B108.0
O4i—Co1—O4—C12139 (11)C2—C1—C6—N1179.6 (3)
O5i—Co1—O4—C12103.4 (3)S1—C1—C6—N11.1 (4)
O5—Co1—O4—C1276.6 (3)C7—N1—C6—C5175.5 (4)
N2i—Co1—O4—C12175.0 (3)C8—N1—C6—C52.5 (6)
N2—Co1—O4—C125.0 (3)C7—N1—C6—C14.1 (5)
O4—Co1—O5—C1472.2 (2)C8—N1—C6—C1177.1 (3)
O4i—Co1—O5—C14107.8 (2)C15—N2—C13—C1280.4 (4)
O5i—Co1—O5—C14141.4 (8)C11—N2—C13—C12154.9 (3)
N2i—Co1—O5—C14170.7 (2)Co1—N2—C13—C1238.0 (4)
N2—Co1—O5—C149.3 (2)C13—N2—C15—C1483.1 (4)
O4—Co1—N2—C15105.4 (2)C11—N2—C15—C14151.8 (3)
O4i—Co1—N2—C1574.6 (2)Co1—N2—C15—C1434.7 (4)
O5i—Co1—N2—C15166.0 (2)C7—N1—C8—C977.0 (5)
O5—Co1—N2—C1514.0 (2)C6—N1—C8—C995.8 (4)
N2i—Co1—N2—C155 (14)O3—C9—C8—N1169.0 (4)
O4—Co1—N2—C1317.6 (2)O2—C9—C8—N110.3 (5)
O4i—Co1—N2—C13162.4 (2)C6—N1—C7—O1176.0 (4)
O5i—Co1—N2—C1370.9 (3)C8—N1—C7—O12.4 (6)
O5—Co1—N2—C13109.1 (3)C6—N1—C7—S14.9 (4)
N2i—Co1—N2—C13118 (14)C8—N1—C7—S1178.5 (3)
O4—Co1—N2—C11136.3 (2)C1—S1—C7—O1177.4 (4)
O4i—Co1—N2—C1143.7 (2)C1—S1—C7—N13.5 (3)
O5i—Co1—N2—C1147.7 (2)Co1—O4—C12—C1326.9 (4)
O5—Co1—N2—C11132.3 (2)N2—C13—C12—O444.2 (5)
N2i—Co1—N2—C11123 (13)C5—C4—C3—C20.9 (7)
C15—N2—C11—C1064.6 (4)C3—C4—C5—C60.7 (7)
C13—N2—C11—C1062.7 (4)C1—C6—C5—C41.1 (6)
Co1—N2—C11—C10178.6 (3)N1—C6—C5—C4178.4 (4)
C7—S1—C1—C61.4 (3)C4—C3—C2—C12.0 (6)
C7—S1—C1—C2177.0 (4)C6—C1—C2—C31.6 (6)
N2—C11—C10—O6172.3 (4)S1—C1—C2—C3176.6 (3)
C2—C1—C6—C50.1 (6)Co1—O5—C14—C1530.8 (4)
S1—C1—C6—C5178.4 (3)N2—C15—C14—O544.5 (4)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2ii0.88 (3)1.71 (3)2.572 (4)166 (3)
O5—H5···O3iii0.86 (1)1.75 (2)2.577 (4)159 (3)
O6—H6···O20.821.882.697 (4)173
C8—H8A···O1iv0.972.483.432 (6)167
C12—H12B···O6v0.972.533.455 (6)159
Symmetry codes: (ii) x, y1, z; (iii) x+2, y+1, z+2; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.88 (3)1.71 (3)2.572 (4)166 (3)
O5—H5···O3ii0.864 (12)1.752 (17)2.577 (4)159 (3)
O6—H6···O20.821.882.697 (4)173
C8—H8A···O1iii0.972.483.432 (6)167
C12—H12B···O6iv0.972.533.455 (6)159
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H15NO3)2](C9H6NO3S)2
Mr773.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.6953 (6), 9.7043 (3), 12.1311 (4)
β (°) 98.513 (4)
V3)1710.94 (11)
Z2
Radiation typeCu Kα
µ (mm1)5.66
Crystal size (mm)0.28 × 0.24 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
Absorption correctionMulti-scan
(SCALE3 ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.280, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
7096, 3487, 2693
Rint0.048
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.175, 1.03
No. of reflections3487
No. of parameters230
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. FPFI T.3-14).

References

First citationAtria, A. M., Parada, J., Garland, M. T. & Baggio, R. (2015). J. Chil. Chem. Soc. 60, 3059–3062.  CrossRef CAS Google Scholar
First citationBellavia, V., Natangelo, M., Fanelli, R. & Rotilio, D. (2000). J. Agric. Food Chem. 48, 1239–1242.  CrossRef PubMed CAS Google Scholar
First citationBeyer, K. H., Bergfeld, W. F., Berndt, W. O., Boutwell, R. K., Carlton, W. W., Hoffmann, D. K. & Schroeder, A. L. (1983). J. Am. Coll. Toxicol. 2, 183–235.  CAS Google Scholar
First citationFunes, A. V., Carrella, L., Rentschler, E. & Alborés, P. (2014). Dalton Trans. 43, 2361–2364.  CrossRef CAS PubMed Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m462–m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapteijn, G. M., Baesjou, P. J., Alsters, P. L., Grove, D. M., Koten, G. V., Smeets, W. J. J., Kooijman, H. & Spek, A. L. (1997). Chem. Ber. Recl, 130, 35–44.  CrossRef CAS Google Scholar
First citationKazak, C., Hamamci, S., Topcu, Y. & Yilmaz, V. T. (2003). J. Mol. Struct. 657, 351–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1–86.  CAS PubMed Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Chun, H., Bernal, I., Reedijk, J., Albada, G. V. & Skelton, B. W. (2001). Cryst. Eng. 4, 201–213.  CrossRef CAS Google Scholar
First citationKrabbes, I., Seichter, W., Breuning, T., Otschik, P. & Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562–1565.  CrossRef CAS Google Scholar
First citationKumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186–1198.  CrossRef CAS Google Scholar
First citationLangley, S. K., Chilton, N. F., Moubaraki, B. & Murray, K. S. (2011). Dalton Trans. 40, 12201–12209.  CrossRef CAS PubMed Google Scholar
First citationMaestri, A. G. & Brown, S. N. (2004). Inorg. Chem. 43, 6995–7004.  CrossRef PubMed CAS Google Scholar
First citationMirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34–38.  CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 837–838.  CrossRef Google Scholar
First citationSeo, K. W., Park, M., Kim, J. G., Kim, T. W. & $ Kim, H. J. (2000). J. Appl. Toxicol. 20, 427–430.  Google Scholar
First citationSharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574–583.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTopcu, Y., Yilmaz, V. T. & Thöne, C. (2001). Acta Cryst. E57, m600–m602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTudor, V., Kravtsov, V., Julve, M., Lloret, F., Simonov, Y. A., Lipkowski, J., Buculei, V. & Andruh, M. (2001). Polyhedron, 20, 3033–3037.  CrossRef CAS Google Scholar
First citationUcar, I., Yesilel, O. Z., Bulut, A., Icbudak, H., Olmez, H. & Kazak, C. (2004). Acta Cryst. E60, m322–m324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWittick, L. M., Jones, L. F., Jensen, P., Moubaraki, B., Spiccia, L., Berry, K. J. & Murray, K. S. (2006). Dalton Trans. pp. 1534–1543.  CrossRef Google Scholar
First citationYang, D., Liang, Y., Ma, P., Li, S., Wang, J. & Niu, J. (2014). CrystEngComm, 16, 8041–8046.  CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Bulut, A., Uçar, İ., İçbudak, H., Ölmez, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m228–m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYilmaz, V. T., Senel, E. & Thöne, C. (2004). Transition Met. Chem. 29, 336–342.  CrossRef CAS Google Scholar
First citationZaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605–6609.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 420-423
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds