metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m137-m138

Bis(N-nitroso-N-pentyl­hy­droxy­laminato-κ2O,O′)copper(II)

aPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russian Federation, bKarpov Institute of Physical Chemistry, 10 Vorontsovo Pole, 105064 Moscow, Russian Federation, and cThe Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), Academician Semenov Avenue 1, Chernogolovka, Moscow region, 142432, Russian Federation
*Correspondence e-mail: alishkh144@gmail.com

(Received 13 February 2014; accepted 4 March 2014; online 19 March 2014)

In the centrosymmetric title compound, [Cu(C5H11N2O2)2], the Cu2+ ion, located on an inversion centre (Wyckoff position 2b), is in a square-planar environment, surounded by four O atoms of the N—O groups of two N-nitroso-N-pentyl­hydroxy­laminate ligands [Cu—O = 1.9042 (17) and 1.9095 (16) Å]. The hy­droxy­laminate monoanions are bidentate chelating ligands. The Cu2+ cations form stacks along [010], with inter­molecular Cu⋯N contacts of 3.146 (2) and 3.653 (2) Å.

Related literature

The basic procedure for the synthesis of the reported complex is described by Zyuzin et al. (1997[Zyuzin, I. N., Nechiporenko, G. N., Golovina, N. I., Trofimova, R. F. & Loginova, M. V. (1997). Russ. Chem. Bull. 46, 1421-1429.]). For related structures of copper complexes with the N-nitroso­hydroxyl­amine derivatives, see: Abraham et al. (1987[Abraham, M. H., Bullock, J. I., Garland, J. H. N., Golder, A. J., Harden, G. J., Larkworti-Iy, L. F., Povey, D. C., Riedl, M. J. & Smith, G. W. (1987). Polyhedron, 6, 1375-1381.]); Kovalchukova et al. (2013[Kovalchukova, O., Bostanabad, A. S., Sergienko, V., Polyakova, I., Zyuzin, I. & Strashnova, S. (2013). Open J. Inorg. Chem. 3, 1-6.], 2014[Kovalchukova, O. V., Bostanabad, A. S., Stash, A. I., Strashnova, S. B. & Zyuzin, I. N. (2014). Russ. J. Inorg. Chem. 59, 332-336.]). The synthesis and properties of other metal nitroso­hydroxy­laminates are given in: Ahmed et al. (1988[Ahmed, M., Edwards, A. J., Jones, C. J., McCIeverty, J. A., Rothin, A. S. & Tate, J. P. (1988). J. Chem. Soc. Dalton Trans. pp. 257-263.]); Basson et al. (1992[Basson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171-173.]); Bolboaca et al. (2000[Bolboaca, M., Cinta, S., Venter, M., Deak, A., Haiduc, I., Cozar, O., Iliescu, T., Rosch, P. & Kiefer, W. (2000). Spectrosc. Lett. 33, 857-862.]); Kovalchukova et al. (2013[Kovalchukova, O., Bostanabad, A. S., Sergienko, V., Polyakova, I., Zyuzin, I. & Strashnova, S. (2013). Open J. Inorg. Chem. 3, 1-6.]); Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m377.]); Okabe & Tamaki (1995[Okabe, N. & Tamaki, K. (1995). Acta Cryst. C51, 2004-2005.]); Parkanyi et al. (1999[Parkanyi, L., Kalman, A., Deak, A., Venter, M. & Haiduc, I. (1999). Inorg. Chem. Commun. 2, 265-268.]); Pavel et al. (2000[Pavel, I., Cinta, S., Venter, M., Deak, A., Haiduc, I., Rosch, P., Cozar, O. & Kiefer, W. (2000). Vib. Spectrosc. 23, 71-76.]); Tamaki & Okabe (1998[Tamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195-197.]); Van der Helm et al. (1965[Van der Helm, D., Merritt, L. L., Degeilh, R. & MacGillavry, C. H. (1965). Acta Cryst. 18, 355-362.]). For applications of N-nitroso­hydroxyl­amine derivatives see: Lundell & Knowles (1920[Lundell, G. E. F. & Knowles, H. B. (1920). J. Ind. Eng. Chem. 12, 344-350.]); Buscarons & Canela (1974[Buscarons, F. & Canela, J. (1974). Anal. Chim. Acta, 70, 113-120.]); Oztekin & Erim (2000[Oztekin, N. & Erim, F. B. (2000). J. Chromatogr. A, 895, 263-268.]); McGill et al. (2000[McGill, A. D., Zhang, W., Wittbrodt, J., Wang, J., Schlegel, H. B. & Wang, P. G. (2000). Bioorg. Med. Chem. 8, 405-412.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H11N2O2)2]

  • Mr = 325.86

  • Monoclinic, P 21 /c

  • a = 14.325 (3) Å

  • b = 4.776 (1) Å

  • c = 11.619 (2) Å

  • β = 103.82 (3)°

  • V = 771.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 293 K

  • 0.80 × 0.20 × 0.03 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.202, Tmax = 0.670

  • 1509 measured reflections

  • 1429 independent reflections

  • 871 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 0.88

  • 1429 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CIFTAB97 and SHELXL97.

Supporting information


Comment top

The chelate-forming derivatives of N-nitroso hydroxylamines form stable complexes with the metallic ions of various natures but only few of them have been structurally characterized (Abraham et al., 1987; Ahmed et al., 1988; Basson et al., 1992; Bolboaca et al., 2000; Kovalchukova et al., 2013; Najafi et al., 2011; Okabe & Tamaki, 1995; Parkanyi et al., 1999; Pavel et al., 2000; Tamaki & Okabe, 1998; Van der Helm et al., 1965). Their ammonium and potassium salts are reported as good analytical reagents for different purposes (Lundell & Knowles, 1920; Buscarons & Canela, 1974; Oztekin & Erim, 2000). In addition, recently it was reported that many o-substituted N-nitroso-N-oxybenzenamines are good NO donors for both in vitro and in vivo assays (McGill et al., 2000). The title compound C10H22CuN4O4 (Fig. 1) is centrosymmetric with the Cu2+ ion located on the inversion centre (Wyckoff position 2b) in square planar coordination, surounded by four oxo O atoms of the N—O groups of two organic ligands [Cu—O = 1.9042 (17) and 1.90905 (16) Å]. The molecule of the metal complex is completed by the 1-x, 1-y, 1-z symmetry operation. The mean deviation from the plane is 0.0199 Å. The N-nitroso-N-(n-pentyl)hydroxylaminate anions are bidentate chelating ligands. The Cu cations in the columns form stacks in the columns along the [010] direction with intermolecular Cu—N contacts equal to 3.146 (2) and 3.653 (2) Å (Fig. 2). The described coordination type of the central atom correlates with those described previously for the bis(N– nitroso-N-benzyl-hydroxylaminato-o,o) copper(II) (Kovalchukova et al., 2013) and bis(N-nitroso-N-ethyl-hydroxylaminato-o,o) copper(II) (Kovalchukova et al., 2014).

Related literature top

The basic procedure for the synthesis of the reported complex is described by Zyuzin et al. (1997). For related structures of copper complexes with the N-nitrosohydroxylamine derivatives, see: Abraham et al. (1987); Kovalchukova et al. (2013, 2014). The synthesis and properties of other metal nitrosohydroxylaminates are giben in: Ahmed et al. (1988); Basson et al. (1992); Bolboaca et al. (2000); Kovalchukova et al. (2013); Najafi et al. (2011); Okabe & Tamaki (1995); Parkanyi et al. (1999); Pavel et al. (2000); Tamaki & Okabe (1998); Van der Helm et al. (1965). For applications of N-nitrosohydroxylamine derivatives see: Lundell & Knowles (1920); Buscarons & Canela (1974); Oztekin & Erim (2000); McGill et al. (2000).

Experimental top

The title compound was obtained in accordance with the previously published procedure (Zyuzin et al., 1997) with some modifications. A solution of n-pentylmagnesium chloride was prepared from magnesium (12.2 g, 0.5 mol) and 1-bromopentane (75.5 g, 0.5 mol) in the dry Et2O (0.5 L). The NO gas was bubbled through the solution under vigorous stirring and cooling at such a rate that NO was almost entirely absorbed. The reaction mixture temperature was maintained in the range 248 to 243 K. After the period of a rapid NO absorption (1 h), stirring was continued in an NO atmosphere for 0.5 h until the NO absorption was completed, with a gradual increase in temperature to 263 K. The reaction mixture was purged with Ar, treated with MeOH (100 mL), poured into ice (300 g) and acidified with 2 M H2SO4. The organic layer was separated, and the aqueous layer was extracted with Et2O (100 mL × 3). The combined extracts were washed with 50 mL 1 M NaOH and 50 mL H2O. The aqueous layer was neutralized with 2 M H2SO4 until pH 4 and treated with 20 per cent CuSO4 solution (120 g, 0.2 mol). The blue precipitate was washed with water, dried and crystallized from EtOH. Yield 42.3 g (52 per cent), blue crystals, m.p. 355–356 K. Analysis calculated for C10H22CuN4O4: Cu 19.50; found: Cu 18.83. Single crystals of C10H22CuN4O4 were grown by the slow evaporation of the ethanol solution of the bis[N-nitroso-N-(n-pentyl)hydroxylaminato] copper(II) powdered sample.

Refinement top

The structure of of C10H22CuN4O4 was solved by direct method and all non-hydrogen atoms were located and refined anisotropically. All the hydrogen atoms added using a riding model.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: CAD-4-PC (Enraf–Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of C10H22CuN4O4 with atom labeling scheme (displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms). The second half of the molecule is generated by the symmetry operator 1-x, 1-y,1-z.
[Figure 2] Fig. 2. Mutual arrangement of neighboring complexes in a stack.
Bis(N-nitroso-N-pentylhydroxylaminato-κ2O,O')copper(II) top
Crystal data top
[Cu(C5H11N2O2)2]F(000) = 342
Mr = 325.86Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.325 (3) Åθ = 9.7–11.9°
b = 4.776 (1) ŵ = 1.43 mm1
c = 11.619 (2) ÅT = 293 K
β = 103.82 (3)°Plate, blue
V = 771.9 (3) Å30.80 × 0.20 × 0.03 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
871 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
β-filter monochromatorθmax = 25.5°, θmin = 2.9°
ω/2τ scansh = 1716
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 50
Tmin = 0.202, Tmax = 0.670l = 013
1509 measured reflections3 standard reflections every 60 min
1429 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
1429 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu(C5H11N2O2)2]V = 771.9 (3) Å3
Mr = 325.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.325 (3) ŵ = 1.43 mm1
b = 4.776 (1) ÅT = 293 K
c = 11.619 (2) Å0.80 × 0.20 × 0.03 mm
β = 103.82 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
871 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.030
Tmin = 0.202, Tmax = 0.6703 standard reflections every 60 min
1509 measured reflections intensity decay: none
1429 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 0.88Δρmax = 0.32 e Å3
1429 reflectionsΔρmin = 0.68 e Å3
88 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.04458 (15)
O10.38526 (12)0.6395 (4)0.39762 (14)0.0498 (4)
O20.55742 (13)0.7912 (3)0.42774 (14)0.0498 (4)
N10.40843 (14)0.8595 (4)0.34077 (15)0.0447 (4)
N20.49421 (15)0.9440 (4)0.35334 (17)0.0481 (5)
C10.33006 (17)1.0104 (6)0.26151 (19)0.0506 (5)
H110.35591.17160.22880.061*
H120.28551.07780.30630.061*
C20.2767 (2)0.8251 (6)0.1611 (2)0.0577 (6)
H210.32250.73660.12320.069*
H220.24310.67880.19280.069*
C30.20524 (19)0.9925 (7)0.0702 (2)0.0647 (6)
H310.23941.13730.03830.078*
H320.16061.08400.10910.078*
C40.1491 (3)0.8157 (8)0.0308 (3)0.0848 (10)
H410.10940.68440.00000.102*
H420.19370.70830.06410.102*
C50.0852 (3)0.9888 (11)0.1285 (3)0.1163 (15)
H510.05160.86690.19030.174*
H520.12421.11710.16030.174*
H530.03961.09180.09660.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0460 (2)0.0446 (2)0.0432 (2)0.0028 (2)0.01086 (14)0.0008 (2)
O10.0449 (9)0.0472 (9)0.0562 (9)0.0053 (8)0.0097 (7)0.0084 (8)
O20.0473 (10)0.0532 (9)0.0505 (9)0.0062 (8)0.0147 (7)0.0020 (7)
N10.0485 (12)0.0428 (11)0.0428 (9)0.0033 (9)0.0112 (8)0.0001 (8)
N20.0508 (12)0.0499 (14)0.0448 (10)0.0036 (9)0.0137 (8)0.0016 (8)
C10.0521 (13)0.0470 (11)0.0533 (11)0.0052 (14)0.0138 (10)0.0037 (14)
C20.0538 (15)0.0578 (16)0.0584 (14)0.0037 (13)0.0073 (12)0.0015 (12)
C30.0556 (15)0.0693 (15)0.0641 (14)0.0041 (17)0.0042 (11)0.0016 (17)
C40.069 (2)0.092 (3)0.081 (2)0.0044 (19)0.0064 (16)0.0107 (19)
C50.099 (3)0.140 (4)0.086 (2)0.002 (3)0.025 (2)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O11.9042 (17)C2—H210.9700
Cu1—O1i1.9042 (17)C2—H220.9700
Cu1—O2i1.9095 (16)C3—C41.512 (4)
Cu1—O21.9095 (16)C3—H310.9700
O1—N11.325 (3)C3—H320.9700
O2—N21.314 (2)C4—C51.521 (5)
N1—N21.268 (3)C4—H410.9700
N1—C11.461 (3)C4—H420.9700
C1—C21.518 (4)C5—H510.9600
C1—H110.9700C5—H520.9600
C1—H120.9700C5—H530.9600
C2—C31.512 (4)
O1—Cu1—O1i180.0C3—C2—H22109.4
O1—Cu1—O2i97.54 (7)C1—C2—H22109.4
O1i—Cu1—O2i82.46 (7)H21—C2—H22108.0
O1—Cu1—O282.46 (7)C2—C3—C4113.1 (3)
O1i—Cu1—O297.54 (7)C2—C3—H31109.0
O2i—Cu1—O2180.0C4—C3—H31109.0
N1—O1—Cu1107.90 (13)C2—C3—H32109.0
N2—O2—Cu1113.09 (14)C4—C3—H32109.0
N2—N1—O1123.09 (19)H31—C3—H32107.8
N2—N1—C1119.6 (2)C3—C4—C5112.9 (3)
O1—N1—C1117.35 (19)C3—C4—H41109.0
N1—N2—O2113.32 (18)C5—C4—H41109.0
N1—C1—C2111.5 (2)C3—C4—H42109.0
N1—C1—H11109.3C5—C4—H42109.0
C2—C1—H11109.3H41—C4—H42107.8
N1—C1—H12109.3C4—C5—H51109.5
C2—C1—H12109.3C4—C5—H52109.5
H11—C1—H12108.0H51—C5—H52109.5
C3—C2—C1111.2 (2)C4—C5—H53109.5
C3—C2—H21109.4H51—C5—H53109.5
C1—C2—H21109.4H52—C5—H53109.5
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C5H11N2O2)2]
Mr325.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.325 (3), 4.776 (1), 11.619 (2)
β (°) 103.82 (3)
V3)771.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.80 × 0.20 × 0.03
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.202, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
1509, 1429, 871
Rint0.030
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 0.88
No. of reflections1429
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.68

Computer programs: CAD-4-PC (Enraf–Nonius, 1993), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CIFTAB97 and SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (grant 13–03–00079).

References

First citationAbraham, M. H., Bullock, J. I., Garland, J. H. N., Golder, A. J., Harden, G. J., Larkworti-Iy, L. F., Povey, D. C., Riedl, M. J. & Smith, G. W. (1987). Polyhedron, 6, 1375–1381.  CSD CrossRef CAS Web of Science Google Scholar
First citationAhmed, M., Edwards, A. J., Jones, C. J., McCIeverty, J. A., Rothin, A. S. & Tate, J. P. (1988). J. Chem. Soc. Dalton Trans. pp. 257–263.  CSD CrossRef Web of Science Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171–173.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBolboaca, M., Cinta, S., Venter, M., Deak, A., Haiduc, I., Cozar, O., Iliescu, T., Rosch, P. & Kiefer, W. (2000). Spectrosc. Lett. 33, 857–862.  Web of Science CrossRef CAS Google Scholar
First citationBuscarons, F. & Canela, J. (1974). Anal. Chim. Acta, 70, 113–120.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKovalchukova, O., Bostanabad, A. S., Sergienko, V., Polyakova, I., Zyuzin, I. & Strashnova, S. (2013). Open J. Inorg. Chem. 3, 1–6.  CSD CrossRef CAS Google Scholar
First citationKovalchukova, O. V., Bostanabad, A. S., Stash, A. I., Strashnova, S. B. & Zyuzin, I. N. (2014). Russ. J. Inorg. Chem. 59, 332–336.  Web of Science CrossRef Google Scholar
First citationLundell, G. E. F. & Knowles, H. B. (1920). J. Ind. Eng. Chem. 12, 344–350.  CrossRef CAS Google Scholar
First citationMcGill, A. D., Zhang, W., Wittbrodt, J., Wang, J., Schlegel, H. B. & Wang, P. G. (2000). Bioorg. Med. Chem. 8, 405–412.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m377.  CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Tamaki, K. (1995). Acta Cryst. C51, 2004–2005.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOztekin, N. & Erim, F. B. (2000). J. Chromatogr. A, 895, 263–268.  Web of Science PubMed CAS Google Scholar
First citationParkanyi, L., Kalman, A., Deak, A., Venter, M. & Haiduc, I. (1999). Inorg. Chem. Commun. 2, 265–268.  CAS Google Scholar
First citationPavel, I., Cinta, S., Venter, M., Deak, A., Haiduc, I., Rosch, P., Cozar, O. & Kiefer, W. (2000). Vib. Spectrosc. 23, 71–76.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195–197.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVan der Helm, D., Merritt, L. L., Degeilh, R. & MacGillavry, C. H. (1965). Acta Cryst. 18, 355–362.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZyuzin, I. N., Nechiporenko, G. N., Golovina, N. I., Trofimova, R. F. & Loginova, M. V. (1997). Russ. Chem. Bull. 46, 1421–1429.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m137-m138
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds