Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A novel experimental technique that employs high-energy synchrotron radiation is used for the investigation of through-thickness texture gradients in two aluminium plates, cold-rolled 40% with either intermediate or small draughts. In these two plates, crystallographic textures are inspected in a large number of layers. Texture maps of pole densities throughout the sample thickness are presented. A texture of the rolling type is developed through the plate thickness after intermediate draught rolling. Pronounced inhomogeneities associated with the shear texture are observed in the sample rolled with small draughts. For selected layers, direct pole figures are compared with those obtained by traditional low-energy X-ray diffraction and by the electron backscattering pattern technique using a scanning electron microscope. A good qualitative agreement between textures measured using the three different techniques is obtained. Experimental aspects and potentials of the new technique are discussed.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds