Download citation
Download citation
link to html
Metastable Ge4Bi2Te7 is highly disordered; the average structure corresponds to the rocksalt type. The diffraction pattern shows diffuse streaks interconnecting Bragg reflections along all cubic 〈111〉 directions. These streaks exhibit satellite-like maxima and arise from vacancy ordering in non-periodically spaced defect layers. The atom layers near these vacancy layers are displaced with respect to the average structure: they tend to form α-GeTe-type double layers. The three-dimensional difference pair distribution function (3D-ΔPDF) method yields quantitative information on the distribution of defect layer spacings, which peaks at a value corresponding to Ge3Bi2Te6 building blocks. The cation distribution along with the displacement of the atom layers is refined as well, using a least-squares approach. Bi concentrates on cation positions next to the vacancy layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576714027824/pd5049sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714027824/pd5049Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576714027824/pd5049sup3.pdf
Additional tables

zip

Zip compressed file https://doi.org/10.1107/S1600576714027824/pd5049sup4.zip
Input file and data

CCDC reference: 1040739

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
Bi1.09Ge2.37Te4Synchrotron radiation, λ = 0.47686 Å
Mr = 910.23Cell parameters from 410 reflections
Cubic, Fm3mθ = 3.9–20.1°
a = 6.055 (2) ŵ = 14.63 mm1
V = 222.0 (2) Å3T = 293 K
Z = 1Octahedron, metallic_dark_grey
F(000) = 3740.10 × 0.09 × 0.08 mm
Dx = 6.807 Mg m3
Data collection top
Heavy duty (Huber)
diffractometer
47 reflections with I > 2σ(I)
oscillation scansRint = 0.036
Absorption correction: multi-scan
SADABS
θmax = 24.2°, θmin = 3.9°
Tmin = 0.53, Tmax = 0.79h = 710
1161 measured reflectionsk = 88
49 independent reflectionsl = 108
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullPrimary atom site location: model
R[F2 > 2σ(F2)] = 0.016Secondary atom site location: none
wR(F2) = 0.019 w = 1/[σ2(Fo2) + (0.0052P)2 + 0.0547P]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max < 0.001
49 reflectionsΔρmax = 0.66 e Å3
7 parametersΔρmin = 1.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.0228 (4)0.0228 (4)0.0228 (4)0.0298 (10)0.0740 (8)
Bi10.0228 (4)0.0228 (4)0.0228 (4)0.0298 (10)0.0340 (5)
Te20.50000.50000.50000.02721 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0298 (10)0.0298 (10)0.0298 (10)0.0026 (4)0.0026 (4)0.0026 (4)
Bi10.0298 (10)0.0298 (10)0.0298 (10)0.0026 (4)0.0026 (4)0.0026 (4)
Geometric parameters (Å, º) top
Ge1—Te2i2.896 (2)Te2—Ge1vi2.896 (2)
Ge1—Te2ii2.896 (2)Te2—Bi1vii2.896 (2)
Ge1—Te2iii2.896 (2)Te2—Bi1viii2.896 (2)
Te2—Bi1iv2.896 (2)Te2—Bi1ix2.896 (2)
Te2—Bi1v2.896 (2)Te2—Bi1x2.896 (2)
Te2—Bi1vi2.896 (2)Te2—Ge1xi2.896 (2)
Te2—Ge1iv2.896 (2)Te2—Ge1xii2.896 (2)
Te2—Ge1v2.896 (2)
Te2i—Ge1—Te2ii95.34 (9)Ge1v—Te2—Bi1ix84.66 (9)
Te2i—Ge1—Te2iii95.34 (9)Ge1vi—Te2—Bi1ix5.47 (10)
Te2ii—Ge1—Te2iii95.34 (9)Bi1vii—Te2—Bi1ix7.75 (14)
Bi1iv—Te2—Bi1v84.40 (10)Bi1viii—Te2—Bi1ix90.131 (5)
Bi1iv—Te2—Bi1vi84.40 (10)Bi1iv—Te2—Bi1x5.47 (10)
Bi1v—Te2—Bi1vi84.40 (10)Bi1v—Te2—Bi1x84.66 (9)
Bi1iv—Te2—Ge1iv0.00 (9)Bi1vi—Te2—Bi1x89.869 (5)
Bi1v—Te2—Ge1iv84.40 (10)Ge1iv—Te2—Bi1x5.47 (10)
Bi1vi—Te2—Ge1iv84.40 (10)Ge1v—Te2—Bi1x84.66 (9)
Bi1iv—Te2—Ge1v84.40 (10)Ge1vi—Te2—Bi1x89.869 (5)
Bi1v—Te2—Ge1v0.00 (9)Bi1vii—Te2—Bi1x90.131 (5)
Bi1vi—Te2—Ge1v84.40 (10)Bi1viii—Te2—Bi1x84.40 (10)
Ge1iv—Te2—Ge1v84.40 (10)Bi1ix—Te2—Bi1x95.34 (9)
Bi1iv—Te2—Ge1vi84.40 (10)Bi1iv—Te2—Ge1xi5.47 (10)
Bi1v—Te2—Ge1vi84.40 (10)Bi1v—Te2—Ge1xi89.869 (5)
Bi1vi—Te2—Ge1vi0.0Bi1vi—Te2—Ge1xi84.66 (9)
Ge1iv—Te2—Ge1vi84.40 (10)Ge1iv—Te2—Ge1xi5.47 (10)
Ge1v—Te2—Ge1vi84.40 (10)Ge1v—Te2—Ge1xi89.869 (5)
Bi1iv—Te2—Bi1vii84.66 (9)Ge1vi—Te2—Ge1xi84.66 (9)
Bi1v—Te2—Bi1vii89.869 (5)Bi1vii—Te2—Ge1xi84.40 (10)
Bi1vi—Te2—Bi1vii5.47 (10)Bi1viii—Te2—Ge1xi90.131 (5)
Ge1iv—Te2—Bi1vii84.66 (9)Bi1ix—Te2—Ge1xi90.131 (5)
Ge1v—Te2—Bi1vii89.869 (5)Bi1x—Te2—Ge1xi7.75 (14)
Ge1vi—Te2—Bi1vii5.47 (10)Bi1iv—Te2—Ge1xii89.869 (5)
Bi1iv—Te2—Bi1viii84.66 (9)Bi1v—Te2—Ge1xii5.47 (10)
Bi1v—Te2—Bi1viii5.47 (10)Bi1vi—Te2—Ge1xii84.66 (9)
Bi1vi—Te2—Bi1viii89.869 (5)Ge1iv—Te2—Ge1xii89.869 (5)
Ge1iv—Te2—Bi1viii84.66 (9)Ge1v—Te2—Ge1xii5.47 (10)
Ge1v—Te2—Bi1viii5.47 (10)Ge1vi—Te2—Ge1xii84.66 (9)
Ge1vi—Te2—Bi1viii89.869 (5)Bi1vii—Te2—Ge1xii90.131 (5)
Bi1vii—Te2—Bi1viii95.34 (9)Bi1viii—Te2—Ge1xii7.75 (14)
Bi1iv—Te2—Bi1ix89.869 (5)Bi1ix—Te2—Ge1xii84.40 (10)
Bi1v—Te2—Bi1ix84.66 (9)Bi1x—Te2—Ge1xii90.131 (5)
Bi1vi—Te2—Bi1ix5.47 (10)Ge1xi—Te2—Ge1xii95.34 (9)
Ge1iv—Te2—Bi1ix89.869 (5)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y, z1/2; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y+1/2, z; (x) x, y+1/2, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y, z+1/2.
 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds