Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The annealing effect on the structural perfection of Fe-doped LiNbO3 single crystals has been studied by high-resolution X-ray diffractometry (HRXRD), X-ray topography (XRT) and Fourier transform infrared (FT–IR) spectroscopy. The single crystals, prepared by mixing Li2CO3 and Nb2O5 powders in the molar ratio 48.6:51.4 with 0.05 mol% of iron at 1415 (1) K, were grown by the Czochralski (CZ) method along the [001] direction in air and poled during crystal growth by the application of a DC field. Two low-angle (tilt angle ∼1 arc minute) structural grain boundaries were observed in as-grown specimens. FT–IR spectra revealed that these crystals contain OH and CO32− ionic defects. Grain boundaries and CO32− ionic defects were successfully removed, while the concentration of OH ions was considerably reduced by post-growth thermal annealing at elevated temperatures.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds