Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
High-energy ball milling of a monoclinic ZrO2-10 mol% anatase TiO2 mixture results in the formation of a nanocrystalline cubic ZrO2 polymorphic phase with equimolar fraction of the starting materials. The cubic phase is presumed to have formed from the m-ZrO2 solid solution based on the (001) plane of the m-ZrO2 phase. In the course of milling, the most dense (111) plane of the cubic lattice became parallel to the most dense (\bar{1}11) plane of the monoclinic lattice due to an orientation effect. Annealing of a 12 h milled sample at 773, 873 and 973 K for 1 h results in almost complete transformation of the m-ZrO2 to the c-ZrO2 phase. At 1273 K annealing temperature (1 h), the nanocrystalline sample decomposed into individual starting phases. This suggests that the cubic phase is a metastable one and its stability depends on particle size as well as the working temperature. Formation of the cubic phase at such a low temperature using anatase TiO2 as a phase stabilizer has not been reported previously. The microstructures of the unmilled, all the ball-milled and the annealed samples have been characterized by employing Rietveld's X-ray powder structure refinement methodology. The particle size, root mean square (r.m.s.) lattice strain, lattice parameters, molar fraction, etc., of individual phases have been estimated from Rietveld analysis and are utilized to interpret the results.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds