organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o777-o778

2-Phenyl-8,9,10,11-tetra­hydro-1-benzo­thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine

aDepartment of Chemistry, Karnatak University, Dharwad 580 003, India, and bDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 8 February 2011; accepted 26 February 2011; online 5 March 2011)

In the title compound, C17H14N4S, the benzothieno moiety is fused at one end of the pyramidine ring while the triazole ring with a phenyl substituent is fused at the other side. The triazole ring is almost planar [maximum deviation = 0.0028 (3) Å] while the cyclo­hexane ring adopts a half-chair conformation. In the crystal, pairs of inter­molecular C—H⋯N hydrogen bonds form centrosymmetric head-to-head dimers, corresponding to an R22(8) graph-set motif. Further C—H⋯N inter­actions generate a zigzag chain of mol­ecules along the c axis. The supra­molecular assembly is consolidated by ππ stacking inter­actions [centroid–centroid distance = 3.445 (4) Å].

Related literature

For the biological activity of thio­phenes, benzothio­phenes, pyrimidines and triazolopyrimidines, see: Shishoo & Jain (1992[Shishoo, C. J. & Jain, K. S. J. (1992). J. Heterocycl. Chem. 29, 883-893.]); Bradbury & Rivett (1991[Bradbury, R. H. & Rivett, J. E. (1991). J. Med. Chem. 34, 151-157.]); Elslager et al. (1981[Elslager, E. F., Hess, C., Johnson, J., Ortwine, D., Chu, V. & Werbel, L. M. (1981). J. Med. Chem. 24, 127—140.]); Yunosov et al. (1966[Yunosov, M. S., Akramov, S. T. & Yunusov, S. Yu. (1966). Chem. Nat. Compd, 2, 279-281.]); Blain et al. (1982[Blain, P. G., Mucklow, J. C., Woo, P. D., Roberts, D. F. & Rawlins, M. D. (1982). Br. Med. J. (Clin. Res. Ed.), 284, 150-152.]). For related structures, see: Akkurt et al. (2008[Akkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.]); Buzykin et al. (2008[Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Azancheev, N. M., Avvakumova, L. V., Rizvanov, I. Kh., Gubaidullin, A. T., Litvinov, I. A. & Syakaev, V. V. (2008). Russ. J. Gen. Chem. 78, 461-479.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732-o3734.]); Lipson et al. (2006[Lipson, V. V., Desenko, S. M., Borodina, V. V., Shirobokova, M. G., Shishkin, O. V. & Zubatyuk, R. I. (2006). Russ. Chem. Bull. 55, 1224-1228.]); Belcher & Squattrito (2006[Belcher, L. K. A. & Squattrito, P. J. (2006). J. Chem. Crystallogr. 36, 175-180.]). For hydrogen-bond motifs, see: Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & and Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N4S

  • Mr = 306.38

  • Monoclinic, P 21 /c

  • a = 8.6239 (16) Å

  • b = 20.512 (4) Å

  • c = 8.5952 (16) Å

  • β = 111.975 (3)°

  • V = 1410.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.960, Tmax = 0.964

  • 8272 measured reflections

  • 3042 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.202

  • S = 1.25

  • 3042 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.50 3.413 (3) 166
C11—H11B⋯N2ii 0.97 2.82 3.653 (5) 144
Symmetry codes: (i) -x-1, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.] and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The Chemistry of thiophenes and benzothiophenes is well documented in the literature and has drawn much attention because of their wide spectrum of biological activities (Shishoo et al., 1992). Pyrimidines and triazolopyrimidines are also associated with diverse biological activities (Bradbury et al., 1991; Elslager et al., 1981). In view of the pharmacological significance of thiophene and pyrimidine derivatives in well known drugs such as coramine (Yunosov et al., 1966), antipyrine (Blain et al., 1982) and also in continuation of our work on biologicallyactive nitrogen and sulfur heterocycles. In the title compound, the benzothieno moiety is fused at one end of the pyramidine ring and the triazole ring with a phenyl substituent is fused at the other side. The fused triazole-pyrimidine-benzotheino and the phenyl ring is coplanar with the dihedral angle 2.584 (3)°. The triazole ring is essentially planar similar to those reported earlier (Belcher & Squattrito, 2006; Buzykin et al., 2008) with maximum deviation of atomsfrom their mean statistical planes being 0.0028 (3) Å. The N(1), atom of the triazole ring is in planar trigonal configuration similar to those reported earlier (Lipson et al., 2006). The N(1)—N(2) bond length in the triazole ring is shorter {1.362 (4)Å} than the distance characteristic of a single N—N bond (1.47 Å). The N—C and N—N distances in the triazole ring vary from 1.36 (2) Å to 1.38 (4) Å respectively. The cyclohexene ring is in half-chair conformation. The plane calculation shows that the atoms C10 and C11 deviate from the mean plane C7/C8/C9/C12 constituting the ring by -0.358 (4)Å and 0.302 (4) Å,respectively, indicating that the conformation of the ring is that of a half-chair, with the atoms C10 and C11 being displaced by this overall planarity of the rest of the ring. The ring puckering parameters for the cyclohexene ring in the title compound are Q(2) = 0.3816 (3)Å, ϕ(2) = 23.08 (5)° and θ= 129.07 (4)° respectively. In most of the benzotheino ring systems the cyclohexyl ring adopts half-chair conformation (Akkurt et al., 2008; Harrison et al., 2006). The crystal structure is stabilized by two C—H···N intermolecular interactions. One of the C—H···N interaction links the molecules into head-head centrosymmetric dimers corresponding to graph set notation R22(8) (Bernstein et al., 1995) (Fig 2), while the other C—H···N interaction interaction generates chain of molecules in a zig-zag tape like pattern along c axis (Fig 2). Additionally, the supramolecular assembly is further stabilized by ππ stacking interaction between the pyrimidine and phenyl rings. The C2—C4 (-x - 1,1 - y,1 - z) disposed at a distance of 3.445 (4)Å.

Related literature top

For the biological activity of thiophenes ,benzothiophenes, pyrimidines and triazolopyrimidines, see: Shishoo & Jain (1992); Bradbury & Rivett (1991); Elslager et al. (1981); Yunosov et al. (1966); Blain et al. (1982). For related structures, see: Akkurt et al. (2008); Buzykin et al. (2008); Harrison et al. (2006); Lipson et al. (2006); Belcher & Squattrito (2006). For hydrogen-bond motifs, see: Bernstein et al. 1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A solution of 2-Amino-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carbonitrile (1.78 g, 10 mmole) in triethylorthoformate (12 ml) was heated under reflux for 18 h; excess triethylorthoformate was removed under pressure. The residue was treated with petroleum ether. Solid that separated was filtered and recrystallized with petroleum ether to afford light brown crystals of N-(3-Cyano-4, 5, 6, 7-tetrahydro-benzo[b]thiophen-2-yl)-formimidic acid ethyl ester. 0.234 g, 1 mmole of this mixture and benzoic acid hydrazide (0.136 g, 1 mmole) was stirred at room temperature in toluene (5 ml) and then AcOH (0.06 g,1 mmole) was added and refluxed further till the completion of the reaction. The reaction mixture was then washed with water and dried over sodium sulfate. Toluene was removed under pressure to get analytically pure product. Yield 74%; mp; 196–198° C.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with aromatic C—H = 0.97 Å, heterocyclic C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
2-Phenyl-8,9,10,11-tetrahydro-1- benzothieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine top
Crystal data top
C17H14N4SF(000) = 640
Mr = 306.38Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3042 reflections
a = 8.6239 (16) Åθ = 2.6–27.0°
b = 20.512 (4) ŵ = 0.23 mm1
c = 8.5952 (16) ÅT = 296 K
β = 111.975 (3)°Block, white
V = 1410.0 (5) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3042 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1011
Tmin = 0.960, Tmax = 0.964k = 2619
8272 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.1054P)2]
where P = (Fo2 + 2Fc2)/3
3042 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C17H14N4SV = 1410.0 (5) Å3
Mr = 306.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6239 (16) ŵ = 0.23 mm1
b = 20.512 (4) ÅT = 296 K
c = 8.5952 (16) Å0.18 × 0.16 × 0.16 mm
β = 111.975 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3042 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2345 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.964Rint = 0.057
8272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.25Δρmax = 0.72 e Å3
3042 reflectionsΔρmin = 0.66 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1145 (3)0.57323 (12)0.5033 (3)0.0166 (6)
C20.2370 (3)0.52330 (12)0.4477 (3)0.0160 (6)
C30.4107 (3)0.44589 (13)0.3912 (3)0.0163 (6)
C40.5006 (3)0.38839 (13)0.4128 (3)0.0177 (6)
C50.3157 (3)0.56670 (13)0.1641 (4)0.0205 (6)
H50.38570.56350.05170.025*
C60.1062 (3)0.61456 (13)0.3786 (4)0.0189 (6)
C70.0023 (3)0.58943 (13)0.6675 (3)0.0174 (6)
C80.0944 (3)0.64270 (13)0.6629 (3)0.0185 (6)
C90.2214 (4)0.67497 (14)0.8139 (4)0.0228 (6)
H9A0.21040.72200.80250.027*
H9B0.33320.66310.82260.027*
C100.1936 (4)0.65306 (15)0.9725 (4)0.0297 (7)
H10A0.28790.66671.07100.036*
H10B0.09400.67390.97600.036*
C110.1742 (4)0.57928 (15)0.9757 (4)0.0292 (7)
H11A0.16420.56671.08030.035*
H11B0.27350.55860.97100.035*
C120.0201 (4)0.55527 (13)0.8282 (3)0.0197 (6)
H12A0.02960.50870.81440.024*
H12B0.07930.56290.85290.024*
C130.6266 (3)0.35972 (13)0.2766 (4)0.0187 (6)
H130.65620.37760.16990.022*
C140.7074 (4)0.30477 (14)0.3003 (4)0.0216 (6)
H140.79200.28620.20910.026*
C150.6648 (4)0.27684 (14)0.4573 (4)0.0213 (6)
H150.71860.23930.47150.026*
C160.5407 (4)0.30559 (15)0.5931 (4)0.0232 (7)
H160.51180.28750.69940.028*
C170.4598 (3)0.36091 (13)0.5716 (4)0.0211 (6)
H170.37730.38000.66380.025*
N10.3331 (3)0.52294 (11)0.2782 (3)0.0170 (5)
N20.4455 (3)0.47305 (11)0.2407 (3)0.0190 (5)
N30.2852 (3)0.47484 (10)0.5218 (3)0.0173 (5)
N40.2022 (3)0.61279 (11)0.2114 (3)0.0202 (5)
S10.04561 (9)0.67369 (3)0.46182 (9)0.0205 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (14)0.0123 (13)0.0200 (14)0.0057 (10)0.0089 (11)0.0046 (10)
C20.0157 (14)0.0168 (13)0.0145 (13)0.0021 (10)0.0044 (11)0.0027 (10)
C30.0148 (13)0.0135 (13)0.0187 (14)0.0013 (10)0.0039 (11)0.0001 (10)
C40.0193 (14)0.0158 (13)0.0182 (14)0.0036 (11)0.0072 (11)0.0012 (11)
C50.0211 (15)0.0189 (14)0.0198 (15)0.0025 (11)0.0057 (12)0.0000 (11)
C60.0203 (15)0.0161 (13)0.0201 (15)0.0041 (11)0.0075 (12)0.0011 (11)
C70.0173 (14)0.0171 (14)0.0169 (14)0.0017 (11)0.0055 (11)0.0026 (11)
C80.0173 (14)0.0144 (13)0.0216 (15)0.0029 (11)0.0048 (12)0.0019 (11)
C90.0213 (15)0.0206 (15)0.0240 (16)0.0038 (11)0.0058 (12)0.0015 (11)
C100.0335 (18)0.0271 (16)0.0208 (16)0.0066 (14)0.0015 (14)0.0032 (13)
C110.0303 (18)0.0312 (17)0.0210 (16)0.0031 (14)0.0037 (14)0.0018 (13)
C120.0223 (15)0.0164 (14)0.0181 (14)0.0019 (11)0.0049 (12)0.0027 (11)
C130.0188 (15)0.0186 (14)0.0174 (14)0.0007 (11)0.0054 (11)0.0009 (11)
C140.0193 (15)0.0258 (15)0.0204 (15)0.0018 (12)0.0081 (12)0.0041 (12)
C150.0245 (15)0.0165 (14)0.0254 (16)0.0010 (11)0.0123 (13)0.0011 (11)
C160.0215 (16)0.0263 (16)0.0201 (15)0.0030 (12)0.0059 (12)0.0042 (12)
C170.0174 (15)0.0238 (15)0.0194 (15)0.0007 (12)0.0039 (12)0.0028 (12)
N10.0164 (12)0.0163 (11)0.0172 (12)0.0049 (9)0.0047 (10)0.0015 (9)
N20.0189 (12)0.0180 (12)0.0182 (12)0.0019 (9)0.0048 (10)0.0020 (9)
N30.0186 (12)0.0141 (11)0.0192 (12)0.0012 (9)0.0071 (10)0.0012 (9)
N40.0206 (13)0.0204 (12)0.0178 (12)0.0017 (10)0.0050 (10)0.0032 (9)
S10.0209 (4)0.0173 (4)0.0224 (4)0.0018 (3)0.0071 (3)0.0017 (3)
Geometric parameters (Å, º) top
C1—C61.389 (4)C9—H9A0.9700
C1—C21.420 (4)C9—H9B0.9700
C1—C71.433 (4)C10—C111.524 (4)
C2—N31.329 (3)C10—H10A0.9700
C2—N11.380 (3)C10—H10B0.9700
C3—N21.336 (4)C11—C121.535 (4)
C3—N31.369 (3)C11—H11A0.9700
C3—C41.461 (4)C11—H11B0.9700
C4—C171.395 (4)C12—H12A0.9700
C4—C131.395 (4)C12—H12B0.9700
C5—N41.311 (4)C13—C141.380 (4)
C5—N11.379 (3)C13—H130.9300
C5—H50.9300C14—C151.383 (4)
C6—N41.365 (4)C14—H140.9300
C6—S11.731 (3)C15—C161.386 (4)
C7—C81.360 (4)C15—H150.9300
C7—C121.504 (4)C16—C171.380 (4)
C8—C91.503 (4)C16—H160.9300
C8—S11.739 (3)C17—H170.9300
C9—C101.537 (4)N1—N21.363 (3)
C6—C1—C2115.3 (3)H10A—C10—H10B108.0
C6—C1—C7113.5 (2)C10—C11—C12111.8 (3)
C2—C1—C7131.2 (2)C10—C11—H11A109.3
N3—C2—N1109.3 (2)C12—C11—H11A109.3
N3—C2—C1134.9 (3)C10—C11—H11B109.3
N1—C2—C1115.8 (2)C12—C11—H11B109.3
N2—C3—N3115.8 (2)H11A—C11—H11B107.9
N2—C3—C4121.5 (2)C7—C12—C11111.6 (2)
N3—C3—C4122.7 (2)C7—C12—H12A109.3
C17—C4—C13118.9 (2)C11—C12—H12A109.3
C17—C4—C3119.9 (3)C7—C12—H12B109.3
C13—C4—C3121.2 (3)C11—C12—H12B109.3
N4—C5—N1121.0 (3)H12A—C12—H12B108.0
N4—C5—H5119.5C14—C13—C4119.9 (3)
N1—C5—H5119.5C14—C13—H13120.1
N4—C6—C1127.6 (3)C4—C13—H13120.1
N4—C6—S1121.4 (2)C15—C14—C13121.2 (3)
C1—C6—S1111.0 (2)C15—C14—H14119.4
C8—C7—C1111.1 (2)C13—C14—H14119.4
C8—C7—C12122.8 (2)C14—C15—C16119.0 (3)
C1—C7—C12126.1 (2)C14—C15—H15120.5
C7—C8—C9125.0 (3)C16—C15—H15120.5
C7—C8—S1113.3 (2)C17—C16—C15120.5 (3)
C9—C8—S1121.7 (2)C17—C16—H16119.8
C8—C9—C10109.4 (2)C15—C16—H16119.8
C8—C9—H9A109.8C16—C17—C4120.5 (3)
C10—C9—H9A109.8C16—C17—H17119.7
C8—C9—H9B109.8C4—C17—H17119.7
C10—C9—H9B109.8N2—N1—C5125.3 (2)
H9A—C9—H9B108.2N2—N1—C2110.3 (2)
C11—C10—C9111.2 (3)C5—N1—C2124.5 (2)
C11—C10—H10A109.4C3—N2—N1101.6 (2)
C9—C10—H10A109.4C2—N3—C3103.0 (2)
C11—C10—H10B109.4C5—N4—C6115.7 (2)
C9—C10—H10B109.4C6—S1—C891.09 (13)
C6—C1—C2—N3179.6 (3)C3—C4—C13—C14178.9 (2)
C7—C1—C2—N31.3 (5)C4—C13—C14—C150.6 (4)
C6—C1—C2—N10.9 (3)C13—C14—C15—C161.2 (4)
C7—C1—C2—N1178.1 (3)C14—C15—C16—C170.6 (4)
N2—C3—C4—C17179.3 (2)C15—C16—C17—C40.5 (4)
N3—C3—C4—C170.2 (4)C13—C4—C17—C161.1 (4)
N2—C3—C4—C130.1 (4)C3—C4—C17—C16178.3 (3)
N3—C3—C4—C13179.3 (2)N4—C5—N1—N2179.1 (2)
C2—C1—C6—N40.6 (4)N4—C5—N1—C20.3 (4)
C7—C1—C6—N4178.7 (3)N3—C2—N1—N20.4 (3)
C2—C1—C6—S1179.33 (19)C1—C2—N1—N2180.0 (2)
C7—C1—C6—S10.1 (3)N3—C2—N1—C5179.9 (2)
C6—C1—C7—C80.5 (3)C1—C2—N1—C50.5 (4)
C2—C1—C7—C8178.5 (3)N3—C3—N2—N10.3 (3)
C6—C1—C7—C12178.1 (2)C4—C3—N2—N1179.0 (2)
C2—C1—C7—C121.0 (5)C5—N1—N2—C3179.5 (2)
C1—C7—C8—C9176.4 (2)C2—N1—N2—C30.1 (3)
C12—C7—C8—C91.2 (4)N1—C2—N3—C30.5 (3)
C1—C7—C8—S11.0 (3)C1—C2—N3—C3180.0 (3)
C12—C7—C8—S1178.6 (2)N2—C3—N3—C20.5 (3)
C7—C8—C9—C1017.3 (4)C4—C3—N3—C2178.7 (2)
S1—C8—C9—C10159.9 (2)N1—C5—N4—C60.7 (4)
C8—C9—C10—C1147.7 (3)C1—C6—N4—C50.3 (4)
C9—C10—C11—C1262.6 (4)S1—C6—N4—C5178.4 (2)
C8—C7—C12—C1111.0 (4)N4—C6—S1—C8178.3 (2)
C1—C7—C12—C11171.7 (3)C1—C6—S1—C80.5 (2)
C10—C11—C12—C742.0 (3)C7—C8—S1—C60.9 (2)
C17—C4—C13—C140.6 (4)C9—C8—S1—C6176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.503.413 (3)166
C11—H11B···N2ii0.972.823.653 (5)144
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H14N4S
Mr306.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.6239 (16), 20.512 (4), 8.5952 (16)
β (°) 111.975 (3)
V3)1410.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.960, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
8272, 3042, 2345
Rint0.057
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.202, 1.25
No. of reflections3042
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.66

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.503.413 (3)166
C11—H11B···N2ii0.972.823.653 (5)144
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data-collection facility under the IRHPA–DST program.

References

First citationAkkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBelcher, L. K. A. & Squattrito, P. J. (2006). J. Chem. Crystallogr. 36, 175–180.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & and Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBlain, P. G., Mucklow, J. C., Woo, P. D., Roberts, D. F. & Rawlins, M. D. (1982). Br. Med. J. (Clin. Res. Ed.), 284, 150–152.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBradbury, R. H. & Rivett, J. E. (1991). J. Med. Chem. 34, 151–157.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationBuzykin, B. I., Mironova, E. V., Nabiullin, V. N., Azancheev, N. M., Avvakumova, L. V., Rizvanov, I. Kh., Gubaidullin, A. T., Litvinov, I. A. & Syakaev, V. V. (2008). Russ. J. Gen. Chem. 78, 461–479.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElslager, E. F., Hess, C., Johnson, J., Ortwine, D., Chu, V. & Werbel, L. M. (1981). J. Med. Chem. 24, 127—140.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLipson, V. V., Desenko, S. M., Borodina, V. V., Shirobokova, M. G., Shishkin, O. V. & Zubatyuk, R. I. (2006). Russ. Chem. Bull. 55, 1224–1228.  CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J. & Jain, K. S. J. (1992). J. Heterocycl. Chem. 29, 883–893.  CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYunosov, M. S., Akramov, S. T. & Yunusov, S. Yu. (1966). Chem. Nat. Compd, 2, 279–281.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o777-o778
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds