Download citation
Download citation
link to html
Two new com­pounds, sodium copper nickel diorthophosphate, Na2CuNi(PO4)2 (I), and dimanganese copper diorthophosphate, Mn2Cu(PO4)2 (II), were syn­the­sized hydro­thermally, yielding single crystals, and were studied by X-ray diffraction. In the crystal structures, various transition metals of d-elements occupy symmetrically independent crystallographic positions with different coordination geometries. In the crystal structure of Na2NiCu(PO4)2, NiO6 and CuO6 octa­hedra share edges to form chains that PO4 groups link into a framework with cavities filled with Na atoms. Layered cationic fragments formed from dimers of MnO5 trigonal bipyramids and CuO4 square planes, sharing vertices, are connected through PO4 tetra­hedra into a 3-periodic Mn2Cu(PO4)2 crystal structure. Structural correlations between Na2NiCu(PO4)2 and NaCuPO4 are discussed, and crystal–chemical details of the currently known exclusively synthetic mixed Mn/Cu and Ni/Cu phosphates are presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622003692/ov3158sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622003692/ov3158Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622003692/ov3158IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622003692/ov3158sup4.pdf
Supplementary material

CCDC references: 2164157; 2164158

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Sodium copper nickel diorthophosphate (I) top
Crystal data top
Na2CuNi(PO4)2F(000) = 346
Mr = 358.17Dx = 3.935 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.1300 (1) ÅCell parameters from 2144 reflections
b = 8.6729 (2) Åθ = 4.6–30.5°
c = 6.8473 (2) ŵ = 7.32 mm1
β = 97.104 (3)°T = 293 K
V = 302.31 (1) Å3Asymmetric, light green
Z = 20.15 × 0.12 × 0.09 mm
Data collection top
Rigaku OD Xcalibur Sapphire3
diffractometer
863 independent reflections
Radiation source: fine-focus sealed X-ray tube741 reflections with I > 2σ(I)
Detector resolution: 16.0630 pixels mm-1Rint = 0.036
ω scansθmax = 30.0°, θmin = 4.6°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 77
Tmin = 0.447, Tmax = 0.605k = 1212
4614 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.026P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.58 e Å3
863 reflectionsΔρmin = 0.50 e Å3
68 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0151 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.0000000.5000000.5000000.00953 (16)
Ni11.0000000.5000000.0000000.00901 (16)
P10.55035 (13)0.31773 (8)0.21763 (10)0.00698 (18)
Na10.5394 (2)0.35311 (14)0.71180 (17)0.0129 (3)
O10.5516 (4)0.1372 (2)0.2405 (3)0.0097 (4)
O20.6902 (4)0.3876 (2)0.4086 (3)0.0110 (4)
O30.7043 (4)0.3521 (2)0.0458 (3)0.0120 (4)
O40.2702 (4)0.3796 (2)0.1928 (3)0.0107 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0097 (3)0.0084 (3)0.0095 (3)0.00294 (17)0.00285 (18)0.00193 (17)
Ni10.0085 (3)0.0094 (3)0.0090 (3)0.00042 (18)0.00037 (19)0.00068 (18)
P10.0071 (3)0.0065 (3)0.0073 (3)0.0007 (3)0.0002 (2)0.0000 (2)
Na10.0121 (5)0.0139 (6)0.0126 (5)0.0009 (4)0.0011 (4)0.0001 (5)
O10.0123 (9)0.0057 (9)0.0107 (9)0.0005 (7)0.0001 (7)0.0012 (7)
O20.0117 (9)0.0122 (10)0.0090 (9)0.0041 (8)0.0005 (7)0.0008 (7)
O30.0124 (9)0.0141 (10)0.0098 (9)0.0032 (8)0.0025 (8)0.0000 (8)
O40.0100 (9)0.0092 (10)0.0126 (9)0.0015 (7)0.0003 (7)0.0005 (7)
Geometric parameters (Å, º) top
Cu1—O21.9029 (19)Ni1—Na1iii3.3838 (12)
Cu1—O2i1.9029 (19)P1—O41.5239 (19)
Cu1—O1ii2.0223 (18)P1—O31.5251 (19)
Cu1—O1iii2.0223 (18)P1—O21.5362 (19)
Cu1—Na13.1870 (12)P1—O11.573 (2)
Cu1—Na1i3.1870 (12)P1—Na1viii2.9182 (13)
Cu1—Na1iv3.2235 (11)P1—Na1iv2.9412 (14)
Cu1—Na1v3.2235 (11)P1—Na1x3.0069 (13)
Ni1—O3vi2.0406 (19)P1—Na13.4050 (12)
Ni1—O32.0406 (19)Na1—O22.323 (2)
Ni1—O4vii2.0740 (19)Na1—O3xi2.338 (2)
Ni1—O4v2.0740 (19)Na1—O4ii2.351 (2)
Ni1—O1viii2.1821 (19)Na1—O1xii2.536 (2)
Ni1—O1iii2.1821 (19)Na1—O4iv2.569 (2)
Ni1—Na1i3.1539 (11)Na1—O1ii2.612 (2)
Ni1—Na1ix3.1539 (11)Na1—O2iv2.624 (2)
Ni1—Na1viii3.3838 (12)Na1—O3xii2.633 (2)
O2—Cu1—O2i180.0Na1viii—P1—Na1100.32 (3)
O2—Cu1—O1ii89.22 (8)Na1iv—P1—Na174.16 (4)
O2i—Cu1—O1ii90.78 (8)Na1x—P1—Na186.34 (3)
O2—Cu1—O1iii90.78 (8)O2—Na1—O3xi138.99 (8)
O2i—Cu1—O1iii89.22 (8)O2—Na1—O4ii80.53 (8)
O1ii—Cu1—O1iii180.0O3xi—Na1—O4ii85.83 (8)
O2—Cu1—Na146.29 (6)O2—Na1—O1xii120.39 (8)
O2i—Cu1—Na1133.71 (6)O3xi—Na1—O1xii99.53 (8)
O1ii—Cu1—Na154.83 (6)O4ii—Na1—O1xii122.76 (8)
O1iii—Cu1—Na1125.17 (6)O2—Na1—O4iv87.29 (8)
O2—Cu1—Na1i133.71 (6)O3xi—Na1—O4iv71.01 (7)
O2i—Cu1—Na1i46.29 (6)O4ii—Na1—O4iv127.62 (5)
O1ii—Cu1—Na1i125.17 (6)O1xii—Na1—O4iv107.36 (7)
O1iii—Cu1—Na1i54.83 (6)O2—Na1—O1ii67.66 (7)
Na1—Cu1—Na1i180.0O3xi—Na1—O1ii71.81 (7)
O2—Cu1—Na1iv54.47 (6)O4ii—Na1—O1ii61.51 (7)
O2i—Cu1—Na1iv125.53 (6)O1xii—Na1—O1ii170.55 (10)
O1ii—Cu1—Na1iv128.14 (6)O4iv—Na1—O1ii66.71 (6)
O1iii—Cu1—Na1iv51.86 (6)O2—Na1—O2iv78.17 (8)
Na1—Cu1—Na1iv73.69 (3)O3xi—Na1—O2iv113.87 (8)
Na1i—Cu1—Na1iv106.31 (3)O4ii—Na1—O2iv158.08 (8)
O2—Cu1—Na1v125.53 (6)O1xii—Na1—O2iv65.60 (6)
O2i—Cu1—Na1v54.47 (6)O4iv—Na1—O2iv56.51 (6)
O1ii—Cu1—Na1v51.86 (6)O1ii—Na1—O2iv113.86 (7)
O1iii—Cu1—Na1v128.14 (6)O2—Na1—O3xii88.46 (7)
Na1—Cu1—Na1v106.31 (3)O3xi—Na1—O3xii123.88 (7)
Na1i—Cu1—Na1v73.69 (3)O4ii—Na1—O3xii72.68 (7)
Na1iv—Cu1—Na1v180.0O1xii—Na1—O3xii57.16 (6)
O3vi—Ni1—O3180.0O4iv—Na1—O3xii158.03 (8)
O3vi—Ni1—O4vii92.09 (7)O1ii—Na1—O3xii130.64 (7)
O3—Ni1—O4vii87.91 (7)O2iv—Na1—O3xii101.52 (7)
O3vi—Ni1—O4v87.91 (7)O2—Na1—P1xii117.36 (6)
O3—Ni1—O4v92.09 (7)O3xi—Na1—P1xii101.08 (6)
O4vii—Ni1—O4v180.00 (9)O4ii—Na1—P1xii90.26 (6)
O3vi—Ni1—O1viii92.89 (7)O1xii—Na1—P1xii32.58 (5)
O3—Ni1—O1viii87.11 (7)O4iv—Na1—P1xii139.05 (6)
O4vii—Ni1—O1viii83.98 (7)O1ii—Na1—P1xii150.91 (7)
O4v—Ni1—O1viii96.02 (7)O2iv—Na1—P1xii94.94 (5)
O3vi—Ni1—O1iii87.11 (7)O3xii—Na1—P1xii31.36 (4)
O3—Ni1—O1iii92.89 (7)O2—Na1—P1iv95.62 (7)
O4vii—Ni1—O1iii96.02 (7)O3xi—Na1—P1iv83.58 (6)
O4v—Ni1—O1iii83.98 (7)O4ii—Na1—P1iv158.79 (7)
O1viii—Ni1—O1iii180.00 (8)O1xii—Na1—P1iv77.24 (5)
O3vi—Ni1—Na1i47.82 (6)O4iv—Na1—P1iv31.19 (4)
O3—Ni1—Na1i132.18 (6)O1ii—Na1—P1iv97.64 (6)
O4vii—Ni1—Na1i125.78 (6)O2iv—Na1—P1iv31.39 (4)
O4v—Ni1—Na1i54.22 (6)O3xii—Na1—P1iv128.30 (6)
O1viii—Ni1—Na1i124.96 (5)P1xii—Na1—P1iv109.77 (4)
O1iii—Ni1—Na1i55.04 (5)O2—Na1—P1ii71.90 (6)
O3vi—Ni1—Na1ix132.18 (6)O3xi—Na1—P1ii77.05 (6)
O3—Ni1—Na1ix47.82 (6)O4ii—Na1—P1ii29.98 (5)
O4vii—Ni1—Na1ix54.22 (6)O1xii—Na1—P1ii151.92 (7)
O4v—Ni1—Na1ix125.78 (6)O4iv—Na1—P1ii97.93 (5)
O1viii—Ni1—Na1ix55.04 (5)O1ii—Na1—P1ii31.53 (4)
O1iii—Ni1—Na1ix124.96 (5)O2iv—Na1—P1ii141.56 (6)
Na1i—Ni1—Na1ix180.0O3xii—Na1—P1ii101.21 (6)
O3vi—Ni1—Na1viii128.96 (6)P1xii—Na1—P1ii119.94 (5)
O3—Ni1—Na1viii51.04 (6)P1iv—Na1—P1ii129.05 (4)
O4vii—Ni1—Na1viii136.75 (6)O2—Na1—Ni1xi101.57 (6)
O4v—Ni1—Na1viii43.25 (6)O3xi—Na1—Ni1xi40.29 (5)
O1viii—Ni1—Na1viii81.29 (5)O4ii—Na1—Ni1xi92.18 (6)
O1iii—Ni1—Na1viii98.71 (5)O1xii—Na1—Ni1xi127.48 (6)
Na1i—Ni1—Na1viii95.566 (17)O4iv—Na1—Ni1xi40.92 (4)
Na1ix—Ni1—Na1viii84.434 (17)O1ii—Na1—Ni1xi43.21 (4)
O3vi—Ni1—Na1iii51.04 (6)O2iv—Na1—Ni1xi97.06 (5)
O3—Ni1—Na1iii128.96 (6)O3xii—Na1—Ni1xi160.37 (6)
O4vii—Ni1—Na1iii43.25 (6)P1xii—Na1—Ni1xi140.84 (4)
O4v—Ni1—Na1iii136.75 (6)P1iv—Na1—Ni1xi68.01 (3)
O1viii—Ni1—Na1iii98.71 (5)P1ii—Na1—Ni1xi66.82 (3)
O1iii—Ni1—Na1iii81.29 (5)P1—O1—Cu1xiii120.42 (11)
Na1i—Ni1—Na1iii84.434 (17)P1—O1—Ni1xiii128.63 (11)
Na1ix—Ni1—Na1iii95.566 (17)Cu1xiii—O1—Ni1xiii108.98 (8)
Na1viii—Ni1—Na1iii180.0P1—O1—Na1viii87.21 (9)
O4—P1—O3114.60 (11)Cu1xiii—O1—Na1viii89.29 (7)
O4—P1—O2106.92 (11)Ni1xiii—O1—Na1viii107.54 (8)
O3—P1—O2110.34 (11)P1—O1—Na1x88.22 (9)
O4—P1—O1110.70 (11)Cu1xiii—O1—Na1x85.90 (7)
O3—P1—O1105.95 (11)Ni1xiii—O1—Na1x81.74 (7)
O2—P1—O1108.21 (11)Na1viii—O1—Na1x170.55 (10)
O4—P1—Na1viii167.91 (8)P1—O2—Cu1139.94 (12)
O3—P1—Na1viii63.93 (8)P1—O2—Na1122.52 (11)
O2—P1—Na1viii84.27 (8)Cu1—O2—Na197.40 (8)
O1—P1—Na1viii60.21 (8)P1—O2—Na1iv85.79 (9)
O4—P1—Na1iv60.80 (8)Cu1—O2—Na1iv89.35 (8)
O3—P1—Na1iv92.51 (8)Na1—O2—Na1iv101.83 (8)
O2—P1—Na1iv62.82 (8)P1—O3—Ni1135.00 (12)
O1—P1—Na1iv161.51 (8)P1—O3—Na1ix126.59 (11)
Na1viii—P1—Na1iv130.34 (4)Ni1—O3—Na1ix91.89 (8)
O4—P1—Na1x50.45 (8)P1—O3—Na1viii84.71 (9)
O3—P1—Na1x128.29 (8)Ni1—O3—Na1viii91.90 (7)
O2—P1—Na1x121.36 (8)Na1ix—O3—Na1viii124.25 (9)
O1—P1—Na1x60.25 (8)P1—O4—Ni1xiv142.67 (12)
Na1viii—P1—Na1x119.94 (5)P1—O4—Na1x99.56 (10)
Na1iv—P1—Na1x109.06 (3)Ni1xiv—O4—Na1x99.56 (8)
O4—P1—Na187.02 (8)P1—O4—Na1iv88.02 (9)
O3—P1—Na1145.36 (8)Ni1xiv—O4—Na1iv84.86 (7)
O2—P1—Na135.12 (8)Na1x—O4—Na1iv159.84 (9)
O1—P1—Na189.50 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+2, y+1, z; (vii) x+1, y+1, z; (viii) x+1/2, y+1/2, z1/2; (ix) x, y, z1; (x) x1/2, y+1/2, z1/2; (xi) x, y, z+1; (xii) x1/2, y+1/2, z+1/2; (xiii) x+3/2, y1/2, z+1/2; (xiv) x1, y, z.
Dimanganese copper diorthophosphate (II) top
Crystal data top
Mn2Cu(PO4)2Z = 1
Mr = 363.36F(000) = 173
Triclinic, P1Dx = 3.935 Mg m3
a = 4.8292 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.4051 (5) ÅCell parameters from 1224 reflections
c = 6.5968 (6) Åθ = 3.2–29.8°
α = 72.716 (8)°µ = 8.02 mm1
β = 86.579 (8)°T = 293 K
γ = 69.064 (9)°Flattened, light green
V = 153.35 (3) Å30.10 × 0.05 × 0.05 mm
Data collection top
Rigaku OD Xcalibur Sapphire3
diffractometer
846 independent reflections
Radiation source: fine-focus sealed X-ray tube723 reflections with I > 2σ(I)
Detector resolution: 16.0630 pixels mm-1Rint = 0.043
ω scansθmax = 29.9°, θmin = 3.2°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 66
Tmin = 0.600, Tmax = 0.749k = 77
2449 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.020P)2 + 0.006P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.14Δρmax = 1.19 e Å3
846 reflectionsΔρmin = 0.81 e Å3
62 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.023 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.0000000.5000000.01030 (19)
Mn10.21184 (13)0.73817 (12)0.19171 (9)0.00965 (18)
P0.8665 (2)0.3392 (2)0.28146 (15)0.0064 (2)
O11.1796 (6)0.3337 (5)0.3316 (4)0.0096 (5)
O20.7335 (5)0.2257 (5)0.4930 (4)0.0073 (5)
O30.8902 (6)0.1502 (5)0.1410 (4)0.0100 (6)
O40.6756 (6)0.6372 (5)0.1722 (4)0.0124 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0083 (3)0.0090 (4)0.0134 (4)0.0048 (3)0.0019 (3)0.0005 (3)
Mn10.0118 (3)0.0083 (3)0.0079 (3)0.0027 (2)0.0003 (2)0.0020 (2)
P0.0064 (5)0.0072 (5)0.0062 (4)0.0032 (4)0.0006 (3)0.0018 (4)
O10.0073 (12)0.0116 (14)0.0111 (13)0.0058 (11)0.0004 (10)0.0019 (11)
O20.0072 (12)0.0085 (13)0.0069 (12)0.0038 (10)0.0012 (10)0.0025 (10)
O30.0115 (13)0.0112 (14)0.0088 (12)0.0036 (11)0.0012 (10)0.0059 (11)
O40.0125 (14)0.0098 (14)0.0123 (14)0.0035 (11)0.0016 (11)0.0001 (11)
Geometric parameters (Å, º) top
Cu1—O2i1.925 (2)Mn1—O1ii2.164 (3)
Cu1—O21.925 (2)Mn1—O2vi2.186 (2)
Cu1—O1ii1.975 (3)P—O41.514 (3)
Cu1—O1iii1.975 (3)P—O31.543 (3)
Mn1—O42.113 (3)P—O21.550 (2)
Mn1—O3iv2.134 (2)P—O11.555 (3)
Mn1—O3v2.152 (3)
O2i—Cu1—O2180.00 (9)O4—P—O3111.58 (15)
O2i—Cu1—O1ii90.92 (10)O4—P—O2110.45 (14)
O2—Cu1—O1ii89.08 (10)O3—P—O2108.03 (15)
O2i—Cu1—O1iii89.08 (10)O4—P—O1107.78 (15)
O2—Cu1—O1iii90.92 (10)O3—P—O1110.22 (15)
O1ii—Cu1—O1iii180.00 (14)O2—P—O1108.75 (14)
O4—Mn1—O3iv96.73 (10)P—O1—Cu1vii123.91 (15)
O4—Mn1—O3v125.32 (10)P—O1—Mn1vii110.66 (14)
O3iv—Mn1—O3v79.75 (11)Cu1vii—O1—Mn1vii125.43 (12)
O4—Mn1—O1ii101.81 (10)P—O2—Cu1119.17 (14)
O3iv—Mn1—O1ii106.77 (10)P—O2—Mn1vi129.51 (14)
O3v—Mn1—O1ii131.75 (10)Cu1—O2—Mn1vi111.23 (11)
O4—Mn1—O2vi86.87 (9)P—O3—Mn1iv129.12 (16)
O3iv—Mn1—O2vi160.81 (10)P—O3—Mn1viii125.17 (15)
O3v—Mn1—O2vi82.80 (9)Mn1iv—O3—Mn1viii100.25 (11)
O1ii—Mn1—O2vi90.81 (9)P—O4—Mn1116.27 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z; (v) x1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z; (viii) x+1, y1, z.
Bond-valence data top
Na2NiCu(PO4)2 (I)
NaNiCuPΣ
O10.137, 0.1110.240?20.395?21.0871.97
O20.243, 0.1080.546?21.2012.10
O30.234, 0.1050.352?21.2381.93
O40.226, 0.1250.321?20.042?21.2421.96
1.291.831.974.77
Mn2Cu(PO4)2 (II)
MnCuPΣ
O10.3640.449?21.1481.96
O20.3430.514?21.1572.01
O30.395, 0.3760.025?21.1791.98
O40.418, 0.0571.2751.75
1.961.984.76
The symbols \downarrow 2 indicate a multiplication of the corresponding contribution along the column due to the symmetry. The long-distance bonds improve the total charges of the O atoms.
Selected geometric parameters (Å) top
I
Cu1—O21.9029 (19)P1—O41.5239 (19)
Cu1—O2i1.9029 (19)P1—O31.5251 (19)
Cu1—O1ii2.0223 (18)P1—O21.5362 (19)
Cu1—O1iii2.0223 (18)P1—O11.573 (2)
Cu1—O4iv2.856 (2)Na1—O22.323 (2)
Cu1—O4xv2.856 (2)Na1—O3viii2.338 (2)
Ni1—O3iv2.0406 (19)Na1—O4ii2.351 (2)
Ni1—O32.0406 (19)Na1—O1ix2.536 (2)
Ni1—O4v2.0740 (19)Na1—O4x2.569 (2)
Ni1—O4vi2.0740 (19)Na1—O1ii2.612 (2)
Ni1—O1vii2.1821 (19)Na1—O2x2.624 (2)
Ni1—O1iii2.1821 (19)Na1—O3ix2.633 (2)
O2—Cu1—O2i180O2—Cu1—O1iii90.78 (8)
O2—Cu1—O1ii89.22 (8)O2i—Cu1—O1iii89.22 (8)
O2i—Cu1—O1ii90.78 (8)O1ii—Cu1—O1iii180
O3iv—Ni1—O3180O3iv—Ni1—O4v87.91 (7)
O3iv—Ni1—O4vi92.09 (7)O3—Ni1—O4v92.09 (7)
O3—Ni1—O4vii87.91 (7)O4vi—Ni1—O4v180
II
Cu1—O2xi1.925 (2)Mn1—O3xiv2.152 (3)
Cu1—O21.925 (2)Mn1—O1xii2.164 (3)
Cu1—O1xii1.975 (3)Mn1—O2x2.186 (2)
Cu1—O1xiii1.975 (3)Mn1—O4 xii2.848 (3)
Cu1—O3xi3.039 (3)P—O41.514 (3)
Cu1—O33.039 (3)P—O31.543 (3)
Mn1—O42.113 (3)P—O21.550 (2)
Mn1—O3v2.134 (2)P—O11.555 (3)
O2xi—Cu1—O2180O2xi—Cu1—O1xiii89.08 (10)
O2xi—Cu1—O1xii90.92 (10)O2—Cu1—O1xiii90.92 (10)
O2—Cu1—O1xii89.08 (10)O1xii—Cu1—O1xiii180
O4—Mn1—O3v96.73 (10)O3xiv—Mn1—O1xii131.75 (10)
O4—Mn1—O3xiv125.32 (10)O4—Mn1—O2x86.87 (9)
O3v—Mn1—O3xiv79.75 (11)O3v—Mn1—O2x160.81 (10)
O4—Mn1—O1xii101.81 (10)O3xiv—Mn1—O2x82.80 (9)
O3v—Mn1—O1xii106.77 (10)O1xii—Mn1—O2x90.81 (9)
Symmetry code(s): (i) -x+2, -y+1, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z; (vi) x+1, y, z; (vii) x+1/2, -y+1/2, z-1/2; (viii) x, y, z+1; (ix) x-1/2, -y+1/2, z+1/2; (x) -x+1, -y+1, -z+1; (xi) -x+1, -y, -z+1; (xii) x-1, y, z; (xiii) -x+2, -y, -z+1; (xiv) x-1, y+1, z; (xv) -x, -y, -z.
Crystal data for mixed Cu,Ni and Cu,Mn phosphates (with or without additional Na, Ca, Ba and Cs metal atoms) top
CompoundUnit-cell parameters, a, b, c (Å) and α, β and γ (°)Volume (Å3); ZSpace groupMe-centered coordination polyhedraMe—O distances (Å)Periodicity of the MeOn frameworkStructure typeReference
Ba(Mn0.66Cu0.34)P2O7*5.4268 (3)102.184 (4)288.89 (3)P14+1[(Mn,Cu)O5]2.04–2.15, 2.280-periodicBaZnP2O7Lopes et al. (2013)
7.5965 (5)85.624 (4)2(isolated dimers)
7.1925 (5)89.474 (4)
NaCs(Cu0.65Mn0.35)P2O75.208 (2)762.1 (5)Cmc214+1[(Cu,Mn)O5]2.01–2.090-periodicK2CuP2O7Huang & Hwu (1998)
15.073 (5)4(isolated pyramids)
9.708 (3)
Ca3Cu2Ni(PO4)4*17.71388 (9)635.81 (1)P21/a4[CuO4]1.92–1.950-periodicCaCu3(PO4)4Pomjakushin et al. (2007)
4.88512 (2)123.8436 (3)25[(Cu0.5Ni0.5)O5]1.95–2.12(trimers)
8.84635 (5)
Ca3CuNi2(PO4)4*17.7174 (1)1269.22 (2)C2/c4[CuO4]1.94–1.940-periodicCaCu3(PO4)4-derivativePomjakushin et al. (2007)
4.82109 (4)123.6373 (5)45[NiO5]1.98–2.06(trimers)
17.8475 (1)
Na2CuNi(PO4)25.1300 (1)302.31 (1)P21/n6[NiO6]2.04–2.181-periodicβ-NaCuPO4This paper
8.6729 (2)97.104 (3)24+2[CuO6]1.90–2.02, 2.86(chains)
6.8473 (2)
(Cu,Ni)2P2O7*4.52 (1)238 (2)A2/m4+2[(Cu,Ni)O6]No data2-periodicThortveititeHandizi et al. (1993)
8.19 (1)106.90 (1)2(gibbsite-type layers)Sc2Si2O7
6.71 (1)
(Mn0.54Cu0.46)2P2O74.504 (2)244.35 (21)A2/m4+2[(Mn,Cu)O6]2.02–2.07, 2.462-periodicThortveititeHandizi et al. (1994)
8.422 (3)106.26 (4)2(gibbsite-type layers)Sc2Si2O7
6.710 (4)
Mn2.5Cu0.5(PO4)28.8428 (3)610.28 (4)P21/c6[MnO6]2.09–2.412-periodicGraftoniteBond et al. (2011)
11.5331 (4)98.712 (2)43+2[MnO5]1.88–2.05, 2.30, 2.49(corrugated layers)(Mn,Fe,Ca,Mg)3(PO4)2
6.0539 (2)4[CuO4]1.95–1.99
Cu2Mn(PO4)2(H2O)5.381 (2)671.84 (36)P21/n6[MnO6]2.05–2.412-periodicUniqueLiao et al. (1995)
6.181 (2)96.08 (2)44+1[CuO5]1.93–2.01, 2.34(corrugated blocks)
20.314 (4)4+1+1[CuO6]1.90–2.03, 2.55, 2.86
Mn2Cu(PO4)24.8292 (5)72.716 (8)153.35 (3)P15[MnO5]2.11–2.192-periodicCu3(PO4)2This paper
5.4051 (5)86.579 (8)14[CuO4]1.93–1.98(layers)
6.5968 (6)69.064 (9)
CuNi2(PO4)2*6.393 (1)281.24 (8)P21/n5[NiO5]199–2.063-periodicCu3(PO4)2-derivativeGoni et al. (1999)
9.325 (1)90.71 (1)24+2[CuO6]1.97–2.01, 2.61(framework)
4.718 (1)
Mn2Cu(PO4)2(H2O)8.332 (1)692.40 (19)P21/n5+1[MnO6]2.12–2.17, 2.533-periodicUniqueLiao et al. (1995)
10.094 (2)115.11 (1)46[MnO6]2.11–2.25(framework)
9.092 (1)4+1[CuO5]1.92–2.02, 2.33
Cu2.5Mn(PO4)2(OH)8.833 (3)101.33 (3)327.46 (3)P14+2[CuO6]1.94–1.97, 2.803-periodicUniqueYakubovich & Melnikov (1993)
7.556 (3)95.80 (3)25[CuO5]1.92–2.18(framework)
5.334 (1)108.62 (3)4+2[CuO6]1.95–2.00, 2.49, 2.63
5[MnO5]2.11-2.21
Cu3NiO(PO4)28.2288 (2)640.50 (3)P21/n4[CuO4]1.86–2.113-periodicUniqueWeimann et al. (2017)
9.8773 (2)107.826 (3)44+1[CuO5]1.92–2.21, 2.69(framework)
8.2777 (3)4+2[CuO6]1.93–2.15, 2.26, 2.32
6[NiO6]2.02–2.23
Note: (*) based on powder diffraction (including neutron sources).
Selected geometric parameters (Å, °) top
I
Cu1—O21.9029 (19)Na1—O2ix2.624 (2)
Cu1—O1ii2.0223 (18)Na1—O3viii2.633 (2)
Cu1—O4iv2.856 (2)Ni1—O32.0406 (19)
Na1—O22.323 (2)Ni1—O4v2.0740 (19)
Na1—O3vii2.338 (2)Ni1—O1iii2.1821 (19)
Na1—O4ii2.351 (2)P1—O41.5239 (19)
Na1—O1viii2.536 (2)P1—O31.5251 (19)
Na1—O4ix2.569 (2)P1—O21.5362 (19)
Na1—O1ii2.612 (2)P1—O11.573 (2)
O2—Cu1—O2i180.0O2—Cu1—O1iii90.78 (8)
O1ii—Cu1—O1iii180.0O3iv—Ni1—O3180.0
O3iv—Ni1—O4v87.91 (7)O4vi—Ni1—O4v180.00
II
Mn1—O1xi2.164 (3)Cu1—O21.925 (2)
Mn1—O2ix2.186 (2)Cu1—O33.039 (3)
Mn1—O3v2.134 (2)P—O11.555 (3)
Mn1—O3xiii2.152 (3)P—O21.550 (2)
Mn1—O4xi2.848 (3)P—O31.543 (3)
Mn1—O42.113 (3)P—O41.514 (3)
Cu1—O1xi1.975 (3)
O2x—Cu1—O2180.00O2x—Cu1—O1xii89.08 (10)
O1xi—Cu1—O1xii180.00 (14)O4—Mn1—O3v96.73 (10)
O3xiv=ii—Mn1—O1xi131.75 (10)O4—Mn1—O3xiii125.32 (10)
O4—Mn1—O2ix86.87 (9)O3v—Mn1—O3xiii79.75 (11)
O3v—Mn1—O2ix160.81 (10)O4—Mn1—O1xi101.81 (10)
O3xiii—Mn1—O2ix82.80 (9)O3v—Mn1—O1xi106.77 (10)
O1xi—Mn1—O2ix90.81 (9)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x-1/2, -y+1/2, z+1/2; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y, -z+1; (xi) x-1, y, z; (xii) -x+2, -y, -z+1; (xiii) x-1, y+1, z.

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds