Download citation
Download citation
link to html
Single crystals of dicerium trialuminium tetra­germanide, Ce2Al3Ge4, have been synthesized from a high-temperature reaction using an eutectic mixture of Al and Ge as a metal flux. Through single-crystal X-ray diffraction it was established that Ce2Al3Ge4 crystallizes in the centrosymmetric space group Cmce (No. 64) with the Ba2Cd3Bi4 structure type (Pearson code oC36). Five atoms com­pose the asymmetric unit, i.e. one Ce, two Al, and two Ge atoms, all in special positions with Wyckoff symbols 8f (Ce), 4a and 8e (Al), and 8e and 8f (Ge). The structure can be described as a three-dimensional network of Al and Ge atoms, with Ce atoms occupying the cavities of the framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621000383/ov3145sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621000383/ov3145Isup2.hkl
Contains datablock I

CCDC reference: 2055324

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL (Bruker, 2002); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Dicerium trialuminium tetragermanide top
Crystal data top
Ce2Al3Ge4F(000) = 1132
Mr = 651.54Dx = 5.980 Mg m3
Orthorhombic, CmceMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 402 reflections
a = 6.0581 (17) Åθ = 2.7–26.3°
b = 15.045 (4) ŵ = 28.97 mm1
c = 7.940 (2) ÅT = 120 K
V = 723.7 (4) Å3Plate, silver
Z = 40.05 × 0.05 × 0.04 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
402 independent reflections
Radiation source: fine-focus sealed tube371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 26.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.259, Tmax = 0.316k = 1818
1830 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.022Secondary atom site location: difference Fourier map
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.026P)2 + 1.7964P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
402 reflectionsΔρmax = 1.00 e Å3
27 parametersΔρmin = 0.99 e Å3
Special details top

Experimental. Crystals were selected in the glove box and cut in a Paratone N oil bath to the desired dimensions. A suitable crystal was then chosen mounted on the tip of a glass fiber and quickly placed under the cold nitrogen stream (ca. 120 K) in a Bruker SMART CCD-based diffractometer.

Data collection is performed with four batch runs at φ = 0.00 ° (450 frames), at φ = 90.00 ° (450 frames), at φ = 180.00 ° (450 frames), and at φ = 270.00 (450 frames). Frame width = 0.40 ° in ω. Data are merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.00000.11385 (3)0.41715 (6)0.00871 (17)
Ge10.00000.18655 (5)0.05260 (11)0.0093 (2)
Ge20.25000.45123 (5)0.25000.0109 (2)
Al10.25000.28384 (14)0.25000.0074 (5)
Al20.00000.00000.00000.0140 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.0076 (3)0.0091 (2)0.0094 (3)0.0000.0000.00012 (15)
Ge10.0082 (5)0.0097 (4)0.0100 (4)0.0000.0000.0003 (3)
Ge20.0122 (5)0.0099 (4)0.0107 (5)0.0000.0012 (4)0.000
Al10.0090 (13)0.0045 (10)0.0087 (12)0.0000.0047 (10)0.000
Al20.0065 (18)0.0226 (18)0.0129 (19)0.0000.0000.0083 (14)
Geometric parameters (Å, º) top
Ce—Ge13.0944 (12)Ge2—Al2iii2.6025 (5)
Ce—Ge2i3.1688 (9)Ge2—Al2ix2.6025 (6)
Ce—Ge2ii3.1688 (9)Ge2—Ceix3.1688 (9)
Ce—Ge1iii3.1897 (12)Ge2—Cex3.1688 (9)
Ce—Ge2iv3.1996 (8)Ge2—Cevii3.1996 (8)
Ce—Ge2iii3.1996 (8)Ge2—Ceiv3.1996 (8)
Ce—Ge1v3.2294 (9)Al1—Ge1v2.6254 (14)
Ce—Ge1vi3.2294 (9)Al1—Ge1iii2.8750 (10)
Ce—Al1vi3.2551 (18)Al1—Ge1viii2.8750 (10)
Ce—Al13.2551 (18)Al1—Cev3.2551 (18)
Ce—Al1iv3.4129 (12)Al1—Ceiv3.4129 (12)
Ce—Al1iii3.4129 (12)Al1—Cevii3.4129 (12)
Ge1—Al1vi2.6254 (14)Al2—Ge2ii2.6025 (5)
Ge1—Al12.6254 (14)Al2—Ge2vii2.6025 (5)
Ge1—Al22.8375 (11)Al2—Ge2viii2.6025 (5)
Ge1—Al1vii2.8750 (10)Al2—Ge2i2.6025 (5)
Ge1—Al1viii2.8750 (10)Al2—Ge1xi2.8375 (11)
Ge1—Cevii3.1897 (12)Al2—Cev3.5414 (8)
Ge1—Cevi3.2294 (9)Al2—Cexii3.5414 (8)
Ge1—Cev3.2294 (9)Al2—Cevi3.5414 (8)
Ge2—Al12.518 (2)Al2—Cexiii3.5414 (8)
Ge1—Ce—Ge2i83.17 (2)Al1—Ge2—Al2iii106.377 (17)
Ge1—Ce—Ge2ii83.17 (2)Al1—Ge2—Al2ix106.377 (17)
Ge2i—Ce—Ge2ii57.10 (2)Al2iii—Ge2—Al2ix147.25 (3)
Ge1—Ce—Ge1iii89.01 (2)Al1—Ge2—Ceix140.542 (15)
Ge2i—Ce—Ge1iii150.240 (13)Al2iii—Ge2—Ceix74.99 (2)
Ge2ii—Ce—Ge1iii150.240 (13)Al2ix—Ge2—Ceix79.84 (2)
Ge1—Ce—Ge2iv151.745 (10)Al1—Ge2—Cex140.542 (14)
Ge2i—Ce—Ge2iv109.63 (2)Al2iii—Ge2—Cex79.84 (2)
Ge2ii—Ce—Ge2iv83.309 (19)Al2ix—Ge2—Cex74.99 (2)
Ge1iii—Ce—Ge2iv90.55 (3)Ceix—Ge2—Cex78.92 (3)
Ge1—Ce—Ge2iii151.745 (10)Al1—Ge2—Cevii72.182 (16)
Ge2i—Ce—Ge2iii83.309 (19)Al2iii—Ge2—Cevii116.16 (2)
Ge2ii—Ce—Ge2iii109.63 (2)Al2ix—Ge2—Cevii74.44 (2)
Ge1iii—Ce—Ge2iii90.55 (3)Ceix—Ge2—Cevii143.95 (2)
Ge2iv—Ce—Ge2iii56.50 (2)Cex—Ge2—Cevii70.37 (2)
Ge1—Ce—Ge1v87.12 (2)Al1—Ge2—Ceiv72.182 (16)
Ge2i—Ce—Ge1v137.811 (18)Al2iii—Ge2—Ceiv74.44 (2)
Ge2ii—Ce—Ge1v81.05 (2)Al2ix—Ge2—Ceiv116.16 (2)
Ge1iii—Ce—Ge1v69.884 (17)Ceix—Ge2—Ceiv70.37 (2)
Ge2iv—Ce—Ge1v66.311 (19)Cex—Ge2—Ceiv143.95 (2)
Ge2iii—Ce—Ge1v119.09 (2)Cevii—Ge2—Ceiv144.36 (3)
Ge1—Ce—Ge1vi87.12 (2)Ge2—Al1—Ge1123.88 (4)
Ge2i—Ce—Ge1vi81.05 (2)Ge2—Al1—Ge1v123.88 (4)
Ge2ii—Ce—Ge1vi137.811 (18)Ge1—Al1—Ge1v112.23 (9)
Ge1iii—Ce—Ge1vi69.884 (17)Ge2—Al1—Ge1iii81.09 (4)
Ge2iv—Ce—Ge1vi119.09 (2)Ge1—Al1—Ge1iii106.35 (3)
Ge2iii—Ce—Ge1vi66.311 (19)Ge1v—Al1—Ge1iii83.76 (3)
Ge1v—Ce—Ge1vi139.42 (3)Ge2—Al1—Ge1viii81.09 (4)
Ge1—Ce—Al1vi48.766 (16)Ge1—Al1—Ge1viii83.76 (3)
Ge2i—Ce—Al1vi102.32 (3)Ge1v—Al1—Ge1viii106.35 (3)
Ge2ii—Ce—Al1vi131.16 (3)Ge1iii—Al1—Ge1viii162.17 (9)
Ge1iii—Ce—Al1vi52.97 (3)Ge2—Al1—Cev141.78 (3)
Ge2iv—Ce—Al1vi142.89 (3)Ge1—Al1—Cev65.61 (4)
Ge2iii—Ce—Al1vi110.914 (18)Ge1v—Al1—Cev62.42 (4)
Ge1v—Ce—Al1vi101.57 (3)Ge1iii—Al1—Cev135.04 (6)
Ge1vi—Ce—Al1vi47.764 (18)Ge1viii—Al1—Cev62.35 (3)
Ge1—Ce—Al148.766 (16)Ge2—Al1—Ce141.78 (3)
Ge2i—Ce—Al1131.16 (3)Ge1—Al1—Ce62.42 (4)
Ge2ii—Ce—Al1102.32 (3)Ge1v—Al1—Ce65.60 (4)
Ge1iii—Ce—Al152.97 (3)Ge1iii—Al1—Ce62.35 (3)
Ge2iv—Ce—Al1110.914 (18)Ge1viii—Al1—Ce135.04 (6)
Ge2iii—Ce—Al1142.89 (3)Cev—Al1—Ce76.44 (5)
Ge1v—Ce—Al147.764 (18)Ge2—Al1—Ceiv63.19 (3)
Ge1vi—Ce—Al1101.57 (3)Ge1—Al1—Ceiv165.87 (4)
Al1vi—Ce—Al155.46 (4)Ge1v—Al1—Ceiv62.17 (3)
Ge1—Ce—Al1iv124.40 (4)Ge1iii—Al1—Ceiv61.10 (3)
Ge2i—Ce—Al1iv152.21 (3)Ge1viii—Al1—Ceiv110.09 (4)
Ge2ii—Ce—Al1iv117.42 (3)Cev—Al1—Ceiv117.62 (3)
Ge1iii—Ce—Al1iv46.71 (3)Ce—Al1—Ceiv104.19 (2)
Ge2iv—Ce—Al1iv44.63 (4)Ge2—Al1—Cevii63.19 (3)
Ge2iii—Ce—Al1iv73.05 (3)Ge1—Al1—Cevii62.17 (3)
Ge1v—Ce—Al1iv51.203 (17)Ge1v—Al1—Cevii165.87 (4)
Ge1vi—Ce—Al1iv101.88 (3)Ge1iii—Al1—Cevii110.09 (4)
Al1vi—Ce—Al1iv99.66 (2)Ge1viii—Al1—Cevii61.10 (3)
Al1—Ce—Al1iv75.81 (2)Cev—Al1—Cevii104.19 (2)
Ge1—Ce—Al1iii124.40 (4)Ce—Al1—Cevii117.62 (3)
Ge2i—Ce—Al1iii117.42 (3)Ceiv—Al1—Cevii126.38 (7)
Ge2ii—Ce—Al1iii152.21 (3)Ge2ii—Al2—Ge2vii180.00 (3)
Ge1iii—Ce—Al1iii46.71 (3)Ge2ii—Al2—Ge2viii108.82 (2)
Ge2iv—Ce—Al1iii73.05 (3)Ge2vii—Al2—Ge2viii71.18 (2)
Ge2iii—Ce—Al1iii44.63 (4)Ge2ii—Al2—Ge2i71.18 (2)
Ge1v—Ce—Al1iii101.88 (3)Ge2vii—Al2—Ge2i108.82 (2)
Ge1vi—Ce—Al1iii51.203 (17)Ge2viii—Al2—Ge2i180.00 (3)
Al1vi—Ce—Al1iii75.81 (2)Ge2ii—Al2—Ge1xi80.41 (2)
Al1—Ce—Al1iii99.66 (2)Ge2vii—Al2—Ge1xi99.59 (2)
Al1iv—Ce—Al1iii52.69 (2)Ge2viii—Al2—Ge1xi99.59 (2)
Al1vi—Ge1—Al170.46 (5)Ge2i—Al2—Ge1xi80.41 (2)
Al1vi—Ge1—Al2129.74 (5)Ge2ii—Al2—Ge199.59 (2)
Al1—Ge1—Al2129.74 (5)Ge2vii—Al2—Ge180.41 (2)
Al1vi—Ge1—Al1vii96.24 (3)Ge2viii—Al2—Ge180.41 (2)
Al1—Ge1—Al1vii135.76 (3)Ge2i—Al2—Ge199.59 (2)
Al2—Ge1—Al1vii91.73 (5)Ge1xi—Al2—Ge1180.0
Al1vi—Ge1—Al1viii135.76 (3)Ge2ii—Al2—Cev59.797 (18)
Al1—Ge1—Al1viii96.24 (3)Ge2vii—Al2—Cev120.203 (19)
Al2—Ge1—Al1viii91.73 (5)Ge2viii—Al2—Cev60.498 (18)
Al1vii—Ge1—Al1viii63.58 (3)Ge2i—Al2—Cev119.502 (18)
Al1vi—Ge1—Ce68.81 (4)Ge1xi—Al2—Cev120.380 (11)
Al1—Ge1—Ce68.81 (4)Ge1—Al2—Cev59.620 (11)
Al2—Ge1—Ce77.76 (2)Ge2ii—Al2—Cexii120.203 (19)
Al1vii—Ge1—Ce146.78 (2)Ge2vii—Al2—Cexii59.797 (18)
Al1viii—Ge1—Ce146.78 (2)Ge2viii—Al2—Cexii119.502 (18)
Al1vi—Ge1—Cevii71.12 (4)Ge2i—Al2—Cexii60.498 (18)
Al1—Ge1—Cevii71.12 (4)Ge1xi—Al2—Cexii59.620 (11)
Al2—Ge1—Cevii151.83 (3)Ge1—Al2—Cexii120.380 (11)
Al1vii—Ge1—Cevii64.68 (4)Cev—Al2—Cexii180.000 (11)
Al1viii—Ge1—Cevii64.68 (4)Ge2ii—Al2—Cevi119.502 (18)
Ce—Ge1—Cevii130.41 (3)Ge2vii—Al2—Cevi60.498 (18)
Al1vi—Ge1—Cevi66.63 (3)Ge2viii—Al2—Cevi120.203 (18)
Al1—Ge1—Cevi133.28 (3)Ge2i—Al2—Cevi59.797 (18)
Al2—Ge1—Cevi71.091 (17)Ge1xi—Al2—Cevi120.380 (11)
Al1vii—Ge1—Cevi67.70 (2)Ge1—Al2—Cevi59.620 (11)
Al1viii—Ge1—Cevi127.50 (3)Cev—Al2—Cevi117.59 (2)
Ce—Ge1—Cevi79.089 (18)Cexii—Al2—Cevi62.41 (2)
Cevii—Ge1—Cevi110.117 (17)Ge2ii—Al2—Cexiii60.498 (18)
Al1vi—Ge1—Cev133.28 (3)Ge2vii—Al2—Cexiii119.502 (18)
Al1—Ge1—Cev66.63 (3)Ge2viii—Al2—Cexiii59.797 (18)
Al2—Ge1—Cev71.091 (16)Ge2i—Al2—Cexiii120.203 (18)
Al1vii—Ge1—Cev127.50 (3)Ge1xi—Al2—Cexiii59.620 (11)
Al1viii—Ge1—Cev67.70 (2)Ge1—Al2—Cexiii120.380 (11)
Ce—Ge1—Cev79.089 (18)Cev—Al2—Cexiii62.41 (2)
Cevii—Ge1—Cev110.117 (17)Cexii—Al2—Cexiii117.59 (2)
Cevi—Ge1—Cev139.42 (3)Cevi—Al2—Cexiii180.0
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y, z+1/2; (vi) x1/2, y, z+1/2; (vii) x, y+1/2, z1/2; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y+1/2, z+1/2; (xi) x, y, z; (xii) x1/2, y, z1/2; (xiii) x+1/2, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds