Download citation
Download citation
link to html
The novel Zintl phase dibarium zinc diphosphide (Ba2ZnP2) was synthesized for the first time. This was accom­plished using the Pb flux technique, which allowed for the growth of crystals of adequate size for structural determination via single-crystal X-ray diffraction methods. The Ba2ZnP2 com­pound was determined to crystallize in a body-centered ortho­rhom­bic space group, Ibam (No. 72). Formally, this crystallographic arrangement belongs to the K2SiP2 structure type. Therefore, the structure can be best described as infinite [ZnP2]4− polyanionic chains with divalent Ba2+ cations located between the chains. All valence electrons are partitioned, which conforms to the Zintl–Klemm concept and suggests that Ba2ZnP2 is a valence-precise com­position. The electronic band structure of this new com­pound, com­puted with the aid of the TB–LMTO–ASA code, shows that Ba2ZnP2 is an intrinsic semiconductor with a band gap of ca 0.6 eV.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620010827/ov3142sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620010827/ov3142Isup2.hkl
Contains datablock I

CCDC reference: 2021633

Computing details top

Data collection: SMART (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Dibarium zinc diphosphide top
Crystal data top
Ba2ZnP2Dx = 4.722 Mg m3
Mr = 401.99Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, IbamCell parameters from 995 reflections
a = 6.756 (4) Åθ = 3.1–29.2°
b = 13.108 (8) ŵ = 18.38 mm1
c = 6.385 (4) ÅT = 200 K
V = 565.4 (6) Å3Block, black
Z = 40.05 × 0.04 × 0.03 mm
F(000) = 688
Data collection top
Bruker APEXII CCD
diffractometer
396 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 29.6°, θmin = 3.1°
Tmin = 0.249, Tmax = 0.336h = 99
3529 measured reflectionsk = 1818
437 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0163P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 1.12 e Å3
S = 1.04Δρmin = 0.86 e Å3
437 reflectionsExtinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
17 parametersExtinction coefficient: 0.00142 (12)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The collected data were integrated with the Bruker-supplied software (Bruker, 2014), and absorption correction was applied using the SADABS software (Bruker, 2014). The crystal structure was solved using the ShelXT code (Sheldrick, 2015a), using Olex2 as the graphical interface (Dolomanov et al., 2009). Structural parameters were refined using the full-matrix least squares method on F2 with SHELXL (Sheldrick 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.19118 (4)0.35970 (2)0.0000000.01146 (12)
Zn0.0000000.0000000.2500000.01103 (19)
P0.20008 (18)0.10649 (10)0.0000000.0107 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.01154 (17)0.01068 (17)0.01215 (17)0.00097 (11)0.0000.000
Zn0.0105 (4)0.0117 (4)0.0109 (4)0.0000.0000.000
P0.0117 (6)0.0100 (6)0.0105 (6)0.0018 (5)0.0000.000
Geometric parameters (Å, º) top
Ba—Bai4.1067 (19)Ba—P3.320 (2)
Ba—Baii4.370 (2)Ba—Piii3.306 (2)
Ba—Baiii4.3698 (19)Ba—Pviii3.317 (2)
Ba—Baiv4.1067 (19)Ba—Pii3.306 (2)
Ba—Znv3.2066 (12)Zn—P2.5147 (14)
Ba—Zniii3.2066 (12)Zn—Pi2.5147 (14)
Ba—Pvi3.347 (2)Zn—Pix2.5147 (14)
Ba—Pvii3.466 (2)Zn—Px2.5147 (14)
Baiv—Ba—Baiii133.03 (3)P—Ba—Pvi98.64 (3)
Bai—Ba—Baiii63.03 (3)Piii—Ba—Pvii76.26 (2)
Baii—Ba—Baiii93.87 (5)Pii—Ba—Pviii79.64 (3)
Bai—Ba—Baii133.03 (3)Pii—Ba—P97.47 (3)
Baiv—Ba—Baii63.03 (3)Pviii—Ba—Pvii69.86 (4)
Baiv—Ba—Bai102.05 (5)Baiii—Zn—Bavi110.01 (4)
Zniii—Ba—Bai91.28 (4)Baiii—Zn—Baxi98.82 (4)
Zniii—Ba—Baiii84.00 (4)Bavi—Zn—Baxi120.29 (4)
Znv—Ba—Baii84.00 (4)Baiii—Zn—Baxii120.29 (4)
Znv—Ba—Baiv91.28 (4)Baxii—Zn—Baxi110.01 (4)
Znv—Ba—Bai142.77 (2)Baxii—Zn—Bavi98.82 (4)
Zniii—Ba—Baiv142.77 (2)Pi—Zn—Baxi169.75 (2)
Znv—Ba—Baiii128.52 (3)Pi—Zn—Bavi69.39 (5)
Zniii—Ba—Baii128.52 (3)Px—Zn—Baxii73.46 (5)
Zniii—Ba—Znv59.71 (4)P—Zn—Baxii169.75 (2)
Zniii—Ba—Pviii45.31 (2)Px—Zn—Baiii69.67 (5)
Znv—Ba—Pvii44.06 (2)Pix—Zn—Baxii69.39 (4)
Zniii—Ba—Piii45.40 (2)Pix—Zn—Bavi69.67 (5)
Znv—Ba—Pii45.40 (2)P—Zn—Baiii69.39 (5)
Znv—Ba—Pvi124.68 (3)P—Zn—Baxi69.67 (5)
Znv—Ba—Piii105.03 (4)P—Zn—Bavi73.46 (5)
Zniii—Ba—Pvi124.68 (3)Px—Zn—Baxi69.39 (5)
Zniii—Ba—Pii105.03 (4)Pix—Zn—Baxi73.46 (5)
Zniii—Ba—P124.17 (3)Pi—Zn—Baxii69.67 (5)
Znv—Ba—Pviii45.31 (2)Pix—Zn—Baiii169.75 (2)
Zniii—Ba—Pvii44.06 (2)Px—Zn—Bavi169.75 (2)
Znv—Ba—P124.17 (3)Pi—Zn—Baiii73.46 (5)
Pii—Ba—Baiv52.34 (4)Px—Zn—Pi101.19 (6)
Pvi—Ba—Baiii105.509 (19)P—Zn—Px114.97 (7)
Piii—Ba—Baiii48.87 (4)P—Zn—Pix101.19 (6)
P—Ba—Baii48.60 (3)P—Zn—Pi112.56 (7)
Pvi—Ba—Baii105.509 (19)Pix—Zn—Px112.56 (7)
Pviii—Ba—Baiii126.98 (3)Pix—Zn—Pi114.97 (7)
Pii—Ba—Baiii138.88 (3)Baxi—P—Ba168.24 (4)
Pviii—Ba—Baiv98.006 (17)Baxi—P—Bavii84.81 (4)
Pviii—Ba—Baii126.98 (3)Baxi—P—Bavi110.14 (4)
Piii—Ba—Baiv152.94 (3)Baiii—P—Ba82.53 (2)
P—Ba—Baiii48.60 (3)Baiii—P—Bavi101.73 (3)
Pvii—Ba—Baiii84.48 (2)Baii—P—Bavi101.73 (3)
Pvi—Ba—Bai51.43 (3)Baiii—P—Baii149.92 (5)
Pvii—Ba—Baii84.48 (2)Baii—P—Bavii76.23 (2)
Pvii—Ba—Bai128.60 (3)Baiii—P—Baxi94.67 (3)
Pviii—Ba—Bai98.006 (17)Baii—P—Ba82.53 (3)
Pii—Ba—Baii48.87 (4)Baii—P—Baxi94.67 (3)
Pvi—Ba—Baiv51.43 (3)Ba—P—Bavii83.43 (3)
Piii—Ba—Bai52.34 (4)Bavii—P—Bavi165.05 (5)
Piii—Ba—Baii138.88 (3)Baiii—P—Bavii76.23 (2)
Pii—Ba—Bai152.94 (3)Ba—P—Bavi81.62 (3)
Pvii—Ba—Baiv128.60 (3)Zn—P—Bavii127.32 (4)
P—Ba—Bai90.653 (14)Zn—P—Ba123.04 (4)
P—Ba—Baiv90.653 (14)Zn—P—Baii143.79 (4)
Piii—Ba—Pviii79.64 (3)Znix—P—Baxi65.02 (4)
Piii—Ba—Pii149.92 (5)Znix—P—Ba123.04 (4)
Pvi—Ba—Pvii165.05 (5)Zn—P—Bavi62.47 (3)
Pviii—Ba—P166.169 (16)Zn—P—Baxi65.02 (4)
P—Ba—Pvii96.31 (3)Zn—P—Baiii65.22 (3)
Pviii—Ba—Pvi95.19 (4)Znix—P—Bavi62.47 (3)
Pii—Ba—Pvii76.26 (2)Znix—P—Bavii127.32 (4)
Piii—Ba—P97.47 (3)Znix—P—Baii65.22 (3)
Pii—Ba—Pvi101.68 (3)Znix—P—Baiii143.79 (4)
Piii—Ba—Pvi101.68 (3)Znix—P—Zn78.81 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) x, y, z; (x) x, y, z+1/2; (xi) x+1/2, y1/2, z; (xii) x1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds