Download citation
Download citation
link to html
A study on the crystal structure of monoclinic HfO2 has been performed using synchrotron X-ray and neutron diffraction data separately, as well as a combination of both. The precision of the structural parameters increases significantly due to application of the neutron diffraction technique. The experimental oxygen positions in HfO2, derived precisely, are visualized only by semi-local density functional calculations in terms of the calculated electronic band gap, but are not captured as accurately by using hybrid functionals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620013960/ov3141sup1.cif
Contains datablocks global, I_synchrotron, I_Neutron, Neutron, I_combined_b, combined

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620013960/ov3141I_Neutronsup2.hkl
Contains datablock I_Neutron

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620013960/ov3141I_synchrotronsup3.hkl
Contains datablock I_synchrotron

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S2053229620013960/ov3141combinedsup4.rtv
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620013960/ov3141sup5.pdf
Supplementary material

CCDC reference: 2039450

Computing details top

Program(s) used to solve structure: GSAS (Larson & Von Dreele, 2004) for I_synchrotron, I_Neutron. Program(s) used to refine structure: GSAS (Larson & Von Dreele, 2004) for I_synchrotron, I_Neutron.

Hafnium oxide (I_synchrotron) top
Crystal data top
HfO2Z = 4
Mr = 210.49Dx = 10.129 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.5007 Å
a = 5.1145 (2) ÅT = 295 K
b = 5.1682 (2) ÅParticle morphology: sphere
c = 5.2900 (2) Åwhite
β = 99.211 (3)°cylinder, 25 × 0.1 mm
V = 138.03 (1) Å3Specimen preparation: Prepared at 295 K and 101.3 kPa
Data collection top
Measurement at synchrotron beamline
diffractometer
Data collection mode: transmission
Radiation source: synchrotron, Xpress beamline, ElettraScan method: Stationary detector
Si-crystal monochromatorAbsorption correction: for a cylinder mounted on the φ axis
GSAS Absorption/surface roughness correction: function number 0 (Lobanov & alte da Veiga, 1998).6th European Powder Diffraction Conference, 22-25 August 1998, Budapest, Hungary, Abstract P12-16.) Debye-Scherrer absorption correction Term (= MU.r/wave) = 0.20573E-01 Correction is not refined.
Specimen mounting: CapillaryTmin = 0.983, Tmax = 0.983
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 2 Profile coefficients for Simpson's rule integration of pseudovoigt function Howard, C. J. (1982). J. Appl. Cryst., 15, 615–620. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst., 20, 79–83. Peak tails are ignored where the intensity is below 0.0010 times the peak.
Rp = 0.08141 parameters
Rwp = 0.1110 restraints
Rexp = 0.091(Δ/σ)max < 0.001
R(F2) = 0.05598Background function: GSAS Background function number 1 with 2 terms. Shifted Chebyshev function of 1st kind.
1399 data pointsPreferred orientation correction: General Simple Harmonic (GSH) description using Orientation Distribution Function (ODF) Von Dreele, R. B. (1997). J. Appl. Cryst. 30, 517–525.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hf0.2751 (3)0.0396 (3)0.2073 (3)0.0049 (7)0.9962 (16)
O10.066 (4)0.326 (4)0.339 (4)0.016 (6)
O20.456 (4)0.757 (3)0.487 (5)0.007 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
???????
Geometric parameters (Å, º) top
Hf—Hfi3.441 (3)Hf—O2i2.16 (3)
Hf—Hfii3.441 (3)Hf—O22.21 (3)
Hf—Hf3.305 (4)Hf—O22.21 (3)
Hf—Hf3.447 (4)O1—Hf2.01 (3)
Hf—Hf3.424 (2)O1—Hfv2.05 (3)
Hf—Hf3.424 (2)O1—Hf2.18 (2)
Hf—O12.01 (3)O2—Hfvi2.18 (3)
Hf—O1iii2.05 (3)O2—Hfii2.16 (3)
Hf—O12.18 (2)O2—Hf2.21 (3)
Hf—O2iv2.18 (3)O2—Hf2.21 (3)
O1—Hf—O1iii87.0 (4)O2iv—Hf—O2i116.0 (6)
O1—Hf—O182.1 (6)O2iv—Hf—O271.1 (7)
O1—Hf—O2iv116.7 (9)O2iv—Hf—O274.1 (4)
O1—Hf—O2i101.3 (8)O2i—Hf—O274.5 (5)
O1—Hf—O272.6 (8)O2i—Hf—O276.0 (7)
O1—Hf—O2168.4 (8)O2—Hf—O2116.8 (6)
O1iii—Hf—O177.2 (9)Hf—O1—Hfv147.7 (10)
O1iii—Hf—O2iv88.9 (8)Hf—O1—Hf109.3 (9)
O1iii—Hf—O2i145.0 (9)Hfv—O1—Hf102.8 (9)
O1iii—Hf—O2139.6 (9)Hfvi—O2—Hfii105.0 (12)
O1iii—Hf—O289.1 (8)Hfvi—O2—Hf108.9 (7)
O1—Hf—O2iv156.2 (8)Hfvi—O2—Hf130.8 (10)
O1—Hf—O2i70.6 (8)Hfii—O2—Hf103.1 (9)
O1—Hf—O2131.3 (8)Hfii—O2—Hf104.0 (7)
O1—Hf—O286.4 (9)Hf—O2—Hf102.0 (11)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y+1/2, z+1/2; (vi) x, y+1, z.
Hafnium oxide (I_Neutron) top
Crystal data top
HfO2Z = 4
Mr = 210.49Dx = 10.129 Mg m3
Monoclinic, P21/cNeutron radiation, λ = 1.48 Å
a = 5.1145 (2) ÅT = 295 K
b = 5.1682 (2) ÅParticle morphology: sphere
c = 5.2900 (2) Åwhite
β = 99.211 (3)°cylinder, 50 × 5 mm
V = 138.03 (1) Å3Specimen preparation: Prepared at 295 K and 101.3 kPa
Data collection top
Powder
diffractometer-3 (PD-3)
Data collection mode: transmission
Radiation source: nuclear reactor, Dhruva reactor, BARCScan method: Stationary detector
Si-crystal monochromatorAbsorption correction: for a cylinder mounted on the φ axis
GSAS Absorption/surface roughness correction: function number 0 (Lobanov & alte da Veiga, 1998).6th European Powder Diffraction Conference, 22-25 August 1998, Budapest, Hungary, Abstract P12-16.) Debye-Scherrer absorption correction Term (= MU.r/wave) = 0.78900 Correction is not refined.
Specimen mounting: vanadium canTmin = 0.154, Tmax = 0.220
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 2 Profile coefficients for Simpson's rule integration of pseudovoigt function Howard, C.J. (1982). J. Appl. Cryst., 15, 615–620. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst., 20, 79–83. Peak tails are ignored where the intensity is below 0.0010 times the peak.
Rp = 0.02448 parameters
Rwp = 0.0310 restraints
Rexp = 0.017(Δ/σ)max = 0.05
R(F2) = 0.05598Background function: GSAS Background function number 1 with 14 terms. Shifted Chebyshev function of 1st kind.
2421 data pointsPreferred orientation correction: General Simple Harmonic (GSH) description using Orientation Distribution Function (ODF). Von Dreele, R. B. (1997). J. Appl. Cryst., 30, 517–525.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf0.2747 (4)0.0402 (4)0.2078 (4)0.006 (2)
O10.0668 (5)0.3267 (4)0.3420 (4)0.0090 (5)
O20.4519 (5)0.7551 (5)0.4844 (5)0.0073 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
???????
Geometric parameters (Å, º) top
Hf—Hfi3.444 (3)Hf—O2i2.163 (4)
Hf—Hfii3.444 (3)Hf—O22.235 (4)
Hf—Hf3.305 (4)Hf—O22.211 (4)
Hf—Hf3.455 (5)O1—Hf2.017 (4)
Hf—Hf3.420 (3)O1—Hfv2.047 (4)
Hf—Hf3.420 (3)O1—Hf2.166 (3)
Hf—O12.017 (4)O2—Hfvi2.170 (4)
Hf—O1iii2.047 (4)O2—Hfii2.163 (4)
Hf—O12.166 (3)O2—Hf2.235 (4)
Hf—O2iv2.170 (4)O2—Hf2.211 (4)
O1—Hf—O1iii87.36 (9)O2iv—Hf—O2i115.72 (11)
O1—Hf—O182.54 (10)O2iv—Hf—O271.65 (13)
O1—Hf—O2iv116.61 (14)O2iv—Hf—O274.28 (8)
O1—Hf—O2i101.85 (13)O2i—Hf—O273.94 (9)
O1—Hf—O272.53 (12)O2i—Hf—O275.64 (13)
O1—Hf—O2168.22 (14)O2—Hf—O2116.99 (11)
O1iii—Hf—O176.67 (12)Hf—O1—Hfv146.87 (12)
O1iii—Hf—O2iv88.65 (12)Hf—O1—Hf109.67 (14)
O1iii—Hf—O2i144.97 (14)Hfv—O1—Hf103.33 (12)
O1iii—Hf—O2140.37 (15)Hfvi—O2—Hfii105.27 (13)
O1iii—Hf—O288.48 (12)Hfvi—O2—Hf108.35 (13)
O1—Hf—O2iv155.58 (13)Hfvi—O2—Hf131.78 (16)
O1—Hf—O2i71.26 (12)Hfii—O2—Hf102.08 (14)
O1—Hf—O2131.37 (13)Hfii—O2—Hf104.36 (13)
O1—Hf—O285.77 (12)Hf—O2—Hf101.50 (12)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y+1/2, z+1/2; (vi) x, y+1, z.
Hafnium oxide (combined) top
Crystal data top
HfO2V = 138.03 (1) Å3
Mr = 210.49Z = 4
Monoclinic, P21/cDx = 10.129 Mg m3
a = 5.1145 (2) ÅNeutron/ synchrotron X-ray radiation
b = 5.1682 (2) ÅT = 295 K
c = 5.2900 (2) ÅParticle morphology: sphere
β = 99.211 (3)°white
Data collection top
Powder
diffractometer-3 (PD-3)/ Measurement at synchrotron beamline
Radiation source: nuclear reactor/ synchrotron, Dhruva reactor, BARC/ Xpress beamline, Elettra
Refinement top
Least-squares matrix: full0 restraints
Rp = 0.026(Δ/σ)max = 0.05
Rwp = 0.035Background function: GSAS Background function number 1. Shifted Chebyshev function of 1st kind.
Rexp = 0.022Preferred orientation correction: General Simple Harmonic (GSH) description using Orientation Distribution Function (ODF). Von Dreele, R. B. (1997). J. Appl. Cryst. 30, 517-525.
Profile function: CW Profile function number 2 Profile coefficients for Simpson's rule integration of pseudovoigt function Howard, C. J. (1982). J. Appl. Cryst., 15, 615–620. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst., 20, 79–83. Peak tails are ignored where the intensity is below 0.0010 times the peak.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hf0.2749 (3)0.0402 (2)0.2084 (3)0.0066 (2)0.9979 (17)
O10.0670 (5)0.3273 (4)0.3428 (4)0.0099 (4)
O20.4512 (4)0.7558 (4)0.4840 (4)0.0074 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
???????
Geometric parameters (Å, º) top
Hf—Hfi3.442 (2)Hf—O2i2.167 (3)
Hf—Hfii3.442 (2)Hf—O22.234 (3)
Hf—Hf3.310 (3)Hf—O22.215 (3)
Hf—Hf3.458 (4)O1—Hf2.020 (3)
Hf—Hf3.420 (2)O1—Hfv2.047 (3)
Hf—Hf3.420 (2)O1—Hf2.164 (3)
Hf—O12.020 (3)O2—Hfvi2.163 (3)
Hf—O1iii2.047 (3)O2—Hfii2.167 (3)
Hf—O12.164 (3)O2—Hf2.234 (3)
Hf—O2iv2.163 (3)O2—Hf2.215 (3)
O1—Hf—O1iii87.41 (7)O2iv—Hf—O2i115.78 (8)
O1—Hf—O182.59 (9)O2iv—Hf—O271.61 (10)
O1—Hf—O2iv116.62 (11)O2iv—Hf—O274.36 (6)
O1—Hf—O2i101.76 (11)O2i—Hf—O273.88 (7)
O1—Hf—O272.60 (10)O2i—Hf—O275.77 (10)
O1—Hf—O2168.10 (11)O2—Hf—O2117.05 (8)
O1iii—Hf—O176.39 (11)Hf—O1—Hfv146.61 (12)
O1iii—Hf—O2iv88.80 (10)Hf—O1—Hf109.64 (12)
O1iii—Hf—O2i144.79 (11)Hfv—O1—Hf103.61 (11)
O1iii—Hf—O2140.60 (12)Hfvi—O2—Hfii105.30 (10)
O1iii—Hf—O288.30 (10)Hfvi—O2—Hf108.39 (10)
O1—Hf—O2iv155.48 (11)Hfvi—O2—Hf132.00 (12)
O1—Hf—O2i71.32 (10)Hfii—O2—Hf101.98 (11)
O1—Hf—O2131.51 (10)Hfii—O2—Hf104.23 (10)
O1—Hf—O285.62 (10)Hf—O2—Hf101.37 (9)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y+1/2, z+1/2; (vi) x, y+1, z.
Comparative study of structural parameters of monoclinic HfO2 (P21/c) from previous X-ray diffraction studies top
Cell parametersa (Å)5.1187 (4)5.1170 (1)5.1156 (5)
b (Å)5.1693 (1)5.1754 (2)5.1722 (5)
c (Å)5.2970 (4)5.2915 (2)5.2948 (5)
β (°)99.180 (9)99.216 (2)99.18 (8)
Volume (Å3)V138.36 (2)136.441 (2)138.30 (8)
Atomic positions/Hfx0.2764 (2)0.2755 (2)0.2759 (5)
displacement parametersy0.0402 (1)0.0397 (1)0.0412 (5)
z0.2074 (2)0.2080 (2)0.2078 (5)
Biso2)0.34 (1)0.05 (2)0.45 (5)
O1x0.0709 (20)0.0742 (21)0.073 (8)
y0.3319 (18)0.3316 (18)0.346 (8)
z0.3438 (18)0.3467 (17)0.332 (8)
Biso2)1.52 (1)0.4 (3)0.45 (5)
O2x0.4464 (17)0.4487 (21)0.446 (8)
y0.7554 (16)0.7581 (16)0.748 (8)
z0.4796 (18)0.4801 (23)0.488 (8)
Biso2)0.63 (3)0.8 (4)0.45 (5)
InteratomicHf—O12.036 (11)2.031 (11)2.05 (18)
distance (Å)2.059 (10)2.069 (11)2.03 (5)
2.146 (10)2.128 (9)2.2 (4)
Hf—O22.163 (10)2.170 (12)2.17 (5)
2.146 (9)2.139 (10)2.20 (5)
2.210 (10)2.227 (11)2.16 (5)
2.264 (9)2.250 (11)2.25 (4)
InteratomicHf—O1—Hf109.9 (5)110.9 (5)108 (8)
angle (°)Hf—O2—Hf100.3 (4)100.5 (5)102.30 (17)
101.2 (4)101.6 (5)101.10 (17)
103.8 (4)103.4 (4)105.50 (18)
105.7 (5)106.0 (6)103.70 (19)
R (%)10.1
Rwp (%)10.919.61
Exp Rwp (%)5.197.05
References: (a) Adams et al., (1991); (b) Hann et al. (1985); (c) Ruh & Corfield (1970).
Crystal structure parameters, a.d.p.'s and goodness-of-fit parameters of monoclinic bulk HfO2 (P21/c) from the individual refinement of synchrotron XRD (at λ = 0.5007 Å) pattern, ND pattern (at λ = 1.48 Å) and the combined refinement with both sets of data top
Latticea5.11447 (21)
parameters (Å)b5.16819 (24)
c5.29000 (24)
β99.2109 (33)
Volume (Å3)V138.025 (8)'
AtomicHfx0.27514 (33)0.27470 (40)0.27490 (28)
Positions/y0.03964 (28)0.04020 (35)0.04019 (24)
Isotropic Atomicz0.20728 (29)0.20780 (40)0.20838 (26)
DisplacementUiso2)0.0049 (7)0.0063 (21)0.0066 (2)
ParametersBiso2)0.39 (5)0.50 (17)0.52 (1)
O1x0.0660 (40)0.0668 (5)0.0670 (5)
y0.3260 (40)0.3267 (4)0.3273 (4)
z0.3390 (35)0.3420 (4)0.3428 (4)
Uiso2)0.0160 (60)0.0090 (5)0.0099 (4)
Biso2)1.26 (47)0.71 (4)0.78 (3)
O2x0.4560 (40)0.4519 (5)0.4512 (4)
y0.7568 (29)0.7551 (5)0.7558 (4)
z0.4870 (50)0.4844 (5)0.4840 (4)
Uiso2)0.0070 (50)0.0073 (4)0.0074 (3)
Biso2)0.55 (39)0.58 (3)0.59 (3)
InteratomicHf—O12.01 (3)2.017 (4)2.020 (3)
distance (Å)2.05 (3)2.047 (4)2.047 (3)
2.18 (2)2.166 (3)2.164 (3)
Hf—O2'2.16 (3)2.163 (4)2.167 (3)
2.21 (3)2.047 (4)2.163 (3)
2.21 (3)2.235 (4)2.234 (3)
InteratomicHf—O1—Hf109.3 (9)109.67 (14)109.64 (12)
angle (°)Hf—O2—Hf102.0 (11)101.50 (12)101.37 (9)
103.1 (9)102.08 (14)101.98 (11)
104.0 (7)104.36 (13)104.23 (10)
105.0 (12)105.27 (13)105.30 (10)
Quality-of-fit parametersRwp (%)11.103.0911.50 (XRD pattern), 3.1 (ND pattern)
Reducedχ2'1.4863.202.71
Optimized crystal structure parameters and electronic band gap of monoclinic bulk HfO2 (P21/c) from first-principles density functional theory (DFT) top
MethodLattice parameters (Å) and angle β (°)Unit-cell volume (f.u. = 4) (Å3)Hf—O bond length (Å)Hf—O1—Hf/Hf—O2—Hf angles (°)Band gap (eV) 5.68[D]a, 5.77[D]b, 5.1[I]c
PBE-GGA (optimized)a = 5.164, b = 5.192, c = 5.351, β = 99.008141.67(+2.6%)Hf—O1 (×3): 2.052, 2.059, 2.160; Hf—O2 (×4): 2.181, 2.148, 2.250, 2.283110.905/100.052, 102.003,104.488, 104.4884.69[D], 4.33[I]
PBE-GGA (optimized, previous data)da = 5.215, b = 5.293, c = 5.350, β = 99.73145.56(+5.5%)NANA3.6[I]
PBE-GGA (optimized, previous data)ea = 5.143, b = 5.190, c = 5.330, β = 99.6NANANA4.08[I]
B3LYP (optimized)a = 5.177, b = 5.177, c = 5.362, β = 98.891141.97(+2.9%)Hf—O1 (×3): 2.051, 2.059, 2.157; Hf—O2 (×4): 2.181, 2.146, 2.251, 2.300111.658/99.800, 102.007, 105.040, 105.0406.59[D], 6.23[I]
Notes: f.u. is the formula unit. (a) D is the direct band gap from UV–Vis spectroscopy measurements on films and NA is not available (Balog et al., 1977); (b) D is the direct band gap from spectroscopy ellipsometry measurements on films (He et al., 2007); (c) I is the indirect band gap from optical absorption spectral measurements on nanocrystals (Padma Kumar et al., 2015); (d) calculations based on plane-wave norm-conserving pseudopotentials (Kang et al., 2003); (e) calculations (Ondračka et al., 2016)based on plane-waves and full potentials using the Wien2K code (Blaha et al., 2019).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds