Download citation
Download citation
link to html
From the system CuCl2–biq–NaN(CN)2 (biq is 2,2′-bi­quinoline), the binuclear mol­ecular complex bis­(μ-dicyanamido-κ2N1:N5)bis­[(2,2′-bi­quinoline-κ2N,N′)(di­cyanamido-κN1)copper(II)], [Cu2(C2N3)4(C18H12N2)2] or [Cu2(biq)2(dca)21,5-dca)2] (1) [dca is dicyanamide, N(CN)2] was isolated and characterized by crystal structure analysis, and spectral, thermal and magnetic measurements. IR spectroscopy confirmed the presence of the biq and dca ligands in 1. Its solid-state structure consists of discrete centrosymmetric binuclear copper(II) units with double end-to-end dca bridges. Each CuII atom is in a distorted square-pyramidal environment with the equatorial plane formed by two nitrile N atoms from bridging dca groups, one of the two N atoms of the chelate biq mol­ecule and one nitrile N atom from a terminal dca ligand, whereas the second biq N atom occupies the axial position. Thermal decomposition of 1 in an air atmosphere proceeds gradually, with copper(I) cyanide being the final decomposition product. Magnetic measurements revealed the formation of alternating spin chains and a relatively strong exchange inter­action within the binuclear units was also confirmed by Broken Symmetry DFT (density functional theory) calculations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961801375X/ov3118sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961801375X/ov3118Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S205322961801375X/ov3118Isup3.mol
Supplementary material

CCDC reference: 1870270

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Bis(µ-dicyanamido-κ2N1:N5)bis[(2,2'-biquinoline-κ2N,N')(dicyanamido-κN1)copper(II)] top
Crystal data top
[Cu2(C2N3)4(C18H12N2)2]Z = 1
Mr = 903.87F(000) = 458
Triclinic, P1Dx = 1.575 Mg m3
a = 9.5158 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6393 (4) ÅCell parameters from 7968 reflections
c = 11.0824 (7) Åθ = 4.3–29.1°
α = 88.441 (4)°µ = 1.18 mm1
β = 71.611 (5)°T = 120 K
γ = 81.106 (4)°Prism, blue
V = 952.78 (9) Å30.33 × 0.24 × 0.13 mm
Data collection top
Rigaku Xcalibur AtlasS2 Gemini ultra
diffractometer
4642 independent reflections
Radiation source: fine-focus sealed X-ray tube4219 reflections with I > 2σ(I)
Detector resolution: 5.1783 pixels mm-1Rint = 0.025
ω scansθmax = 29.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
h = 1212
Tmin = 0.804, Tmax = 1.000k = 1212
14202 measured reflectionsl = 1513
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.8125P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4642 reflectionsΔρmax = 1.09 e Å3
280 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystal structure of 1 was determined using an Oxford Diffraction Xcalibur Gemini ultra diffractometer equipped with an AtlasS2 CCD detector using MoKα radiation. CrysAlis PRO 1.171.39.35c (Rigaku Oxford Diffraction, 2017) was used for data collection, cell refinement, data reduction and absorption correction. The structure was solved by SHELXT (Sheldrick, 2015a) and subsequent Fourier syntheses using SHELXL2014 (Sheldrick, 2015b), implemented in WinGX program suite (Farrugia, 2012). Anisotropic displacement parameters were refined for all non-H atoms. An analysis of the bond lengths and angles was performed using SHELXL2014 while PLATON (Spek, 2009) running under WinGX was used to analyze the ππ interactions. DIAMOND (Brandenburg, 2009) was used for molecular graphics.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.30516 (3)0.25748 (2)0.24715 (2)0.01807 (9)
N100.11429 (19)0.39324 (17)0.27427 (16)0.0183 (3)
N200.15998 (18)0.18501 (17)0.42799 (15)0.0181 (3)
N20.5031 (2)0.1424 (2)0.18965 (17)0.0258 (4)
N30.7546 (2)0.1474 (2)0.12686 (17)0.0262 (4)
N10.7337 (2)0.0036 (2)0.05344 (18)0.0263 (4)
N50.3950 (2)0.4106 (2)0.3069 (2)0.0322 (4)
C210.0269 (2)0.2656 (2)0.46555 (18)0.0189 (4)
C110.0001 (2)0.3787 (2)0.37726 (18)0.0189 (4)
C20.6072 (2)0.0757 (2)0.12148 (19)0.0202 (4)
C30.7361 (2)0.0747 (2)0.04102 (19)0.0201 (4)
C220.1892 (2)0.0761 (2)0.50342 (19)0.0202 (4)
C120.0987 (2)0.4946 (2)0.18738 (19)0.0215 (4)
C270.0820 (2)0.0500 (2)0.62095 (19)0.0232 (4)
C190.1403 (2)0.4656 (2)0.4009 (2)0.0261 (4)
H190.22080.45390.47530.031*
C230.3281 (2)0.0141 (2)0.4617 (2)0.0253 (4)
H230.40020.00180.38310.030*
C290.0855 (2)0.2457 (2)0.58108 (19)0.0239 (4)
H290.17940.30570.60480.029*
C50.4456 (2)0.5057 (3)0.2812 (2)0.0321 (5)
C180.1592 (3)0.5664 (2)0.3162 (2)0.0290 (5)
H180.25350.62460.33130.035*
C280.0571 (3)0.1391 (2)0.6580 (2)0.0270 (5)
H280.13090.12510.73630.032*
C250.2529 (3)0.1502 (3)0.6520 (2)0.0312 (5)
H250.27580.22720.70150.037*
C170.0394 (3)0.5846 (2)0.2065 (2)0.0253 (4)
C240.3588 (3)0.1248 (2)0.5349 (2)0.0292 (5)
H240.45240.18490.50640.035*
C260.1182 (3)0.0651 (3)0.6943 (2)0.0301 (5)
H260.04790.08280.77350.036*
C130.2216 (3)0.5100 (2)0.0788 (2)0.0288 (5)
H130.31390.44850.06400.035*
C140.2069 (3)0.6144 (3)0.0051 (2)0.0380 (6)
H140.29020.62590.07730.046*
N60.4470 (3)0.8162 (3)0.1354 (3)0.0546 (7)
C160.0506 (3)0.6896 (3)0.1163 (3)0.0368 (6)
H160.14300.74980.12740.044*
C60.4737 (3)0.7222 (3)0.1928 (3)0.0401 (6)
C150.0702 (3)0.7045 (3)0.0143 (3)0.0425 (6)
H150.06230.77640.04450.051*
N40.5117 (4)0.6184 (3)0.2628 (4)0.0712 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01698 (13)0.01921 (13)0.01593 (13)0.00010 (9)0.00346 (9)0.00140 (9)
N100.0193 (8)0.0174 (8)0.0186 (8)0.0015 (6)0.0071 (6)0.0015 (6)
N200.0182 (8)0.0202 (8)0.0169 (8)0.0046 (6)0.0062 (6)0.0003 (6)
N20.0233 (9)0.0301 (10)0.0240 (9)0.0018 (7)0.0093 (7)0.0069 (7)
N30.0213 (9)0.0310 (10)0.0245 (9)0.0022 (7)0.0068 (7)0.0080 (7)
N10.0181 (8)0.0329 (10)0.0278 (9)0.0017 (7)0.0088 (7)0.0116 (7)
N50.0286 (10)0.0278 (10)0.0353 (11)0.0072 (8)0.0080 (8)0.0056 (8)
C210.0196 (9)0.0215 (9)0.0169 (9)0.0055 (7)0.0063 (7)0.0026 (7)
C110.0186 (9)0.0201 (9)0.0185 (9)0.0026 (7)0.0062 (7)0.0042 (7)
C20.0203 (10)0.0222 (10)0.0202 (9)0.0021 (8)0.0099 (8)0.0018 (7)
C30.0136 (9)0.0214 (9)0.0236 (10)0.0004 (7)0.0051 (7)0.0011 (8)
C220.0224 (10)0.0227 (10)0.0202 (9)0.0085 (8)0.0110 (8)0.0022 (7)
C120.0273 (11)0.0182 (9)0.0223 (10)0.0036 (8)0.0122 (8)0.0001 (7)
C270.0277 (11)0.0286 (11)0.0184 (10)0.0115 (9)0.0115 (8)0.0026 (8)
C190.0187 (10)0.0303 (11)0.0271 (11)0.0002 (8)0.0053 (8)0.0042 (8)
C230.0245 (11)0.0265 (11)0.0277 (11)0.0066 (8)0.0114 (9)0.0045 (8)
C290.0196 (10)0.0315 (11)0.0192 (10)0.0054 (8)0.0030 (8)0.0034 (8)
C50.0175 (10)0.0344 (13)0.0450 (14)0.0022 (9)0.0125 (10)0.0112 (10)
C180.0231 (11)0.0268 (11)0.0382 (13)0.0042 (8)0.0147 (9)0.0040 (9)
C280.0269 (11)0.0375 (12)0.0165 (9)0.0131 (9)0.0032 (8)0.0019 (8)
C250.0395 (13)0.0320 (12)0.0350 (12)0.0170 (10)0.0258 (11)0.0148 (10)
C170.0296 (11)0.0199 (10)0.0314 (11)0.0019 (8)0.0173 (9)0.0005 (8)
C240.0286 (11)0.0268 (11)0.0396 (13)0.0066 (9)0.0205 (10)0.0070 (9)
C260.0370 (13)0.0376 (12)0.0238 (11)0.0174 (10)0.0167 (10)0.0113 (9)
C130.0308 (12)0.0300 (11)0.0253 (11)0.0033 (9)0.0095 (9)0.0054 (9)
C140.0473 (15)0.0390 (14)0.0298 (12)0.0109 (11)0.0141 (11)0.0142 (10)
N60.0658 (18)0.0405 (14)0.0574 (16)0.0176 (13)0.0158 (14)0.0110 (12)
C160.0437 (15)0.0281 (12)0.0463 (15)0.0013 (10)0.0285 (12)0.0066 (10)
C60.0349 (14)0.0341 (13)0.0485 (16)0.0094 (11)0.0072 (12)0.0007 (11)
C150.0581 (18)0.0355 (13)0.0418 (15)0.0081 (12)0.0278 (13)0.0180 (11)
N40.0644 (19)0.0479 (16)0.129 (3)0.0260 (14)0.064 (2)0.0281 (17)
Geometric parameters (Å, º) top
Cu1—N21.9546 (18)C19—H190.9500
Cu1—N3i1.9919 (18)C23—C241.374 (3)
Cu1—N102.0109 (17)C23—H230.9500
Cu1—N52.036 (2)C29—C281.367 (3)
Cu1—N202.2111 (16)C29—H290.9500
N10—C111.327 (3)C5—N41.316 (4)
N10—C121.378 (3)C18—C171.408 (3)
N20—C211.327 (3)C18—H180.9500
N20—C221.374 (3)C28—H280.9500
N2—C21.150 (3)C25—C261.361 (4)
N3—C31.149 (3)C25—C241.411 (3)
N3—Cu1i1.9919 (18)C25—H250.9500
N1—C31.299 (3)C17—C161.419 (3)
N1—C21.303 (3)C24—H240.9500
N5—C51.091 (3)C26—H260.9500
C21—C291.416 (3)C13—C141.373 (3)
C21—C111.492 (3)C13—H130.9500
C11—C191.412 (3)C14—C151.406 (4)
C22—C231.413 (3)C14—H140.9500
C22—C271.423 (3)N6—C61.135 (4)
C12—C131.412 (3)C16—C151.357 (4)
C12—C171.416 (3)C16—H160.9500
C27—C281.408 (3)C6—N41.326 (4)
C27—C261.422 (3)C15—H150.9500
C19—C181.364 (3)
N2—Cu1—N3i88.16 (7)C24—C23—C22120.0 (2)
N2—Cu1—N10169.15 (7)C24—C23—H23120.0
N3i—Cu1—N1088.86 (7)C22—C23—H23120.0
N2—Cu1—N589.86 (8)C28—C29—C21119.2 (2)
N3i—Cu1—N5157.78 (9)C28—C29—H29120.4
N10—Cu1—N588.96 (7)C21—C29—H29120.4
N2—Cu1—N20112.45 (7)N5—C5—N4173.0 (3)
N3i—Cu1—N2098.72 (7)C19—C18—C17120.2 (2)
N10—Cu1—N2078.32 (7)C19—C18—H18119.9
N5—Cu1—N20102.48 (7)C17—C18—H18119.9
C11—N10—C12120.35 (17)C29—C28—C27119.77 (19)
C11—N10—Cu1117.64 (13)C29—C28—H28120.1
C12—N10—Cu1121.95 (14)C27—C28—H28120.1
C21—N20—C22118.59 (17)C26—C25—C24120.4 (2)
C21—N20—Cu1111.27 (13)C26—C25—H25119.8
C22—N20—Cu1130.12 (13)C24—C25—H25119.8
C2—N2—Cu1158.34 (17)C18—C17—C12117.95 (19)
C3—N3—Cu1i156.25 (17)C18—C17—C16123.0 (2)
C3—N1—C2119.41 (18)C12—C17—C16119.0 (2)
C5—N5—Cu1145.8 (2)C23—C24—C25120.8 (2)
N20—C21—C29122.89 (19)C23—C24—H24119.6
N20—C21—C11116.06 (17)C25—C24—H24119.6
C29—C21—C11121.05 (18)C25—C26—C27120.5 (2)
N10—C11—C19121.39 (19)C25—C26—H26119.8
N10—C11—C21116.58 (17)C27—C26—H26119.8
C19—C11—C21122.03 (18)C14—C13—C12119.6 (2)
N2—C2—N1173.1 (2)C14—C13—H13120.2
N3—C3—N1172.7 (2)C12—C13—H13120.2
N20—C22—C23119.08 (18)C13—C14—C15120.9 (2)
N20—C22—C27121.67 (19)C13—C14—H14119.6
C23—C22—C27119.24 (19)C15—C14—H14119.6
N10—C12—C13119.83 (19)C15—C16—C17120.3 (2)
N10—C12—C17120.56 (19)C15—C16—H16119.9
C13—C12—C17119.60 (19)C17—C16—H16119.9
C28—C27—C26123.0 (2)N6—C6—N4175.4 (3)
C28—C27—C22117.91 (19)C16—C15—C14120.6 (2)
C26—C27—C22119.1 (2)C16—C15—H15119.7
C18—C19—C11119.5 (2)C14—C15—H15119.7
C18—C19—H19120.2C5—N4—C6120.9 (3)
C11—C19—H19120.2
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N20.952.513.391 (3)154
Cg···Cg distances and angles (Å, °) characterizing ππ interactions in 1 top
Cg(I)···Cg(J)Cg···Cgαβγ
Cg1···Cg1ii3.6275 (2)020.820.8
Cg1···Cg2ii3.6358 (2)222.821.0
Cg3···Cg1iii3.8779 (2)525.529.8
Cg4···Cg4iv3.8195 (2)010.110.1
Symmetry codes: (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z.

α is the dihedral angle between planes I and J. β is the angle between the Cg(I)···Cg(J) vector and the normal to plane I. γ is the angle between Cg(I)···Cg(J) vector and normal to plane J. Cg1 and Cg2 represent the centroids of the pyridine and phenyl rings of the quinoline moiety containing atom N10, while Cg3 and Cg4 represent the centroids of the pyridine and phenyl rings of the quinoline moiety containing atom N20.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds