Download citation
Download citation
link to html
Amino­pyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6-chloro­nicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, (I), and 5-bromo-6-methyl­isocytosinium hydrogen sulfate (or 2-amino-5-bromo-4-oxo-6-methyl­pyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, (II), have been prepared and characterized by single-crystal X-ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt (I), the primary R22(8) ring motif (supra­molecular heterosynthon) is formed via a pair of N—H...O(carboxyl­ate) hydrogen bonds. The cations, anions and water mol­ecule are hydrogen bonded through N—H...O, N—H...N, O—H...O and C—H...O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen-bonded supra­molecular sheet structure. The supra­molecular double sheet structure is formed via water–carboxylate O—H...O hydrogen bonds and π–π inter­actions between the anions and the cations. In salt (II), the hydrogen sulfate ions are linked via O—H...O hydrogen bonds to generate zigzag chains. The amino­pyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H...O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supra­molecular heterosynthon). The cations also inter­act with one another via halogen–halogen (Br...Br) and halogen–oxygen (Br...O) inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618002462/ov3108sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618002462/ov3108Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618002462/ov3108IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618002462/ov3108Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618002462/ov3108IIsup5.cml
Supplementary material

CCDC references: 1823270; 1823269

Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015a) for (I); SHELX2014/7 (Sheldrick, 2015) for (II). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) for (I); SHELX2014/7 (Sheldrick, 2015) for (II). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008) for (I); PLATON (Spek, 2009), Mercury (Macrae et al., 2008) for (II). Software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (I); PLATON (Spek, 2009) for (II).

Cytosinium 6-chloropyridine-3-carboxylate (I) top
Crystal data top
C4H6N3O+·C6H3ClNO2·H2ODx = 1.562 Mg m3
Mr = 286.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 2286 reflections
a = 19.5314 (12) Åθ = 3.8–29.4°
b = 12.7103 (10) ŵ = 0.33 mm1
c = 9.8189 (5) ÅT = 293 K
V = 2437.5 (3) Å3Plate, colorless
Z = 80.30 × 0.25 × 0.08 mm
F(000) = 1184
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2800 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1688 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.4933 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 2325
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1416
Tmin = 0.409, Tmax = 1.000l = 1211
10045 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0845P)2 + 1.0271P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2800 reflectionsΔρmax = 0.49 e Å3
178 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67574 (4)0.36365 (8)0.49716 (9)0.0525 (3)
O30.48180 (11)0.36704 (18)0.0450 (2)0.0467 (6)
O40.57869 (11)0.4109 (2)0.1506 (2)0.0508 (7)
C70.54367 (15)0.3756 (2)0.2072 (3)0.0361 (7)
H70.49620.37260.20100.043*
C80.58057 (14)0.3855 (2)0.0889 (3)0.0322 (7)
C90.65089 (15)0.3901 (3)0.0985 (3)0.0406 (8)
H90.67740.39800.02060.049*
C100.68162 (16)0.3828 (3)0.2246 (3)0.0437 (8)
H100.72900.38470.23400.052*
C110.63964 (15)0.3728 (2)0.3353 (3)0.0334 (7)
C120.54426 (16)0.3880 (2)0.0465 (3)0.0379 (7)
O20.31280 (11)0.35833 (18)0.1369 (2)0.0478 (6)
N10.30134 (13)0.3640 (2)0.3669 (3)0.0404 (7)
H10.25740.36580.36090.048*
N30.40838 (11)0.36435 (19)0.2674 (2)0.0336 (6)
H30.43370.36430.19570.040*
N40.50634 (12)0.3757 (2)0.3939 (3)0.0397 (7)
H4A0.52940.37870.31940.048*
H4B0.52710.37790.47100.048*
N50.57245 (12)0.3700 (2)0.3318 (2)0.0358 (6)
C20.33890 (15)0.3610 (2)0.2500 (3)0.0357 (7)
C40.43982 (15)0.3677 (2)0.3899 (3)0.0310 (6)
C50.39817 (16)0.3645 (2)0.5086 (3)0.0396 (7)
H50.41770.36270.59490.047*
C60.33059 (16)0.3641 (2)0.4930 (3)0.0396 (8)
H60.30270.36400.56970.048*
O1W0.65468 (14)0.6049 (2)0.1498 (3)0.0567 (8)
H1W0.639 (2)0.545 (4)0.155 (5)0.085*
H2W0.649 (3)0.618 (3)0.068 (5)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (5)0.0800 (7)0.0372 (5)0.0020 (4)0.0133 (3)0.0096 (4)
O30.0303 (12)0.0814 (17)0.0284 (12)0.0066 (10)0.0049 (9)0.0019 (11)
O40.0437 (13)0.0857 (18)0.0230 (12)0.0129 (12)0.0008 (9)0.0003 (11)
C70.0254 (15)0.0528 (19)0.0299 (16)0.0020 (13)0.0015 (11)0.0001 (14)
C80.0276 (14)0.0457 (18)0.0233 (15)0.0020 (12)0.0016 (11)0.0035 (12)
C90.0305 (16)0.059 (2)0.0322 (18)0.0016 (14)0.0053 (13)0.0001 (14)
C100.0223 (15)0.070 (2)0.0388 (18)0.0015 (14)0.0008 (12)0.0000 (16)
C110.0280 (15)0.0437 (18)0.0287 (16)0.0001 (12)0.0056 (12)0.0014 (13)
C120.0363 (17)0.051 (2)0.0262 (15)0.0019 (13)0.0047 (13)0.0042 (14)
O20.0334 (12)0.0722 (17)0.0379 (13)0.0008 (11)0.0085 (9)0.0055 (11)
N10.0234 (12)0.0526 (17)0.0453 (16)0.0017 (11)0.0046 (11)0.0009 (13)
N30.0243 (12)0.0520 (16)0.0244 (13)0.0031 (10)0.0022 (9)0.0006 (11)
N40.0252 (12)0.0698 (19)0.0241 (14)0.0017 (11)0.0004 (10)0.0027 (12)
N50.0281 (13)0.0541 (16)0.0252 (14)0.0004 (11)0.0014 (10)0.0002 (11)
C20.0314 (15)0.0415 (18)0.0341 (18)0.0012 (13)0.0005 (12)0.0024 (14)
C40.0289 (14)0.0390 (17)0.0249 (15)0.0006 (12)0.0003 (11)0.0030 (12)
C50.0341 (16)0.058 (2)0.0271 (16)0.0029 (14)0.0046 (12)0.0061 (15)
C60.0359 (17)0.0506 (19)0.0323 (17)0.0010 (14)0.0103 (13)0.0045 (14)
O1W0.0455 (14)0.084 (2)0.0406 (15)0.0126 (13)0.0057 (12)0.0027 (15)
Geometric parameters (Å, º) top
Cl1—C111.742 (3)N1—C61.364 (4)
O3—C121.249 (4)N1—H10.8600
O4—C121.257 (4)N3—C41.351 (3)
C7—N51.349 (4)N3—C21.368 (4)
C7—C81.373 (4)N3—H30.8600
C7—H70.9300N4—C41.304 (4)
C8—C91.378 (4)N4—H4A0.8600
C8—C121.507 (4)N4—H4B0.8600
C9—C101.379 (4)C4—C51.422 (4)
C9—H90.9300C5—C61.329 (4)
C10—C111.368 (4)C5—H50.9300
C10—H100.9300C6—H60.9300
C11—N51.313 (4)O1W—H1W0.82 (5)
O2—C21.222 (4)O1W—H2W0.82 (5)
N1—C21.363 (4)
N5—C7—C8123.6 (3)C4—N3—C2124.2 (2)
N5—C7—H7118.2C4—N3—H3117.9
C8—C7—H7118.2C2—N3—H3117.9
C7—C8—C9118.0 (3)C4—N4—H4A120.0
C7—C8—C12120.1 (3)C4—N4—H4B120.0
C9—C8—C12121.9 (3)H4A—N4—H4B120.0
C8—C9—C10119.5 (3)C11—N5—C7116.0 (2)
C8—C9—H9120.2O2—C2—N1122.8 (3)
C10—C9—H9120.2O2—C2—N3121.9 (3)
C11—C10—C9117.3 (3)N1—C2—N3115.3 (3)
C11—C10—H10121.3N4—C4—N3118.8 (3)
C9—C10—H10121.3N4—C4—C5123.2 (3)
N5—C11—C10125.5 (3)N3—C4—C5118.0 (3)
N5—C11—Cl1115.2 (2)C6—C5—C4118.3 (3)
C10—C11—Cl1119.2 (2)C6—C5—H5120.9
O3—C12—O4125.6 (3)C4—C5—H5120.9
O3—C12—C8116.4 (3)C5—C6—N1121.4 (3)
O4—C12—C8118.0 (3)C5—C6—H6119.3
C2—N1—C6122.6 (3)N1—C6—H6119.3
C2—N1—H1118.7H1W—O1W—H2W101 (4)
C6—N1—H1118.7
N5—C7—C8—C90.1 (5)Cl1—C11—N5—C7179.2 (2)
N5—C7—C8—C12178.2 (3)C8—C7—N5—C111.1 (4)
C7—C8—C9—C101.1 (5)C6—N1—C2—O2178.2 (3)
C12—C8—C9—C10177.1 (3)C6—N1—C2—N33.6 (4)
C8—C9—C10—C110.9 (5)C4—N3—C2—O2179.8 (3)
C9—C10—C11—N50.4 (5)C4—N3—C2—N11.6 (4)
C9—C10—C11—Cl1179.8 (3)C2—N3—C4—N4176.8 (3)
C7—C8—C12—O39.0 (4)C2—N3—C4—C51.9 (4)
C9—C8—C12—O3169.2 (3)N4—C4—C5—C6175.1 (3)
C7—C8—C12—O4170.9 (3)N3—C4—C5—C63.6 (4)
C9—C8—C12—O410.9 (5)C4—C5—C6—N11.7 (5)
C10—C11—N5—C71.4 (5)C2—N1—C6—C52.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.862.042.896 (4)171
O1W—H1W···O40.82 (5)2.07 (5)2.878 (4)166 (4)
O1W—H2W···O2ii0.83 (5)2.17 (5)2.923 (4)152 (6)
N3—H3···O30.861.752.613 (3)177
N4—H4A···O40.861.962.811 (3)170
N4—H4B···N5iii0.862.132.988 (4)174
C6—H6···O2iv0.932.353.138 (4)142
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1, y+1, z; (iii) x, y, z+1; (iv) x+1/2, y, z+1/2.
2-amino-5-bromo-4-oxy-6-methylpyrimidinium hydrogensulfate (II) top
Crystal data top
C5H7BrN3O·HO4SF(000) = 600
Mr = 302.11Dx = 2.117 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 16.1671 (4) ÅCell parameters from 2315 reflections
b = 4.8786 (1) Åθ = 3.6–74.6°
c = 12.0863 (3) ŵ = 8.13 mm1
β = 96.026 (2)°T = 150 K
V = 948.01 (4) Å3Prism, colorless
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1781 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1710 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4933 pixels mm-1θmax = 70.1°, θmin = 5.5°
ω scansh = 1917
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 55
Tmin = 0.431, Tmax = 1.000l = 1411
3324 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0783P)2 + 1.515P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.77 e Å3
1781 reflectionsΔρmin = 1.38 e Å3
139 parametersExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0044 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.96681 (2)1.14944 (7)0.63903 (3)0.0147 (2)
S10.60155 (4)0.23576 (15)0.71074 (6)0.0059 (2)
O10.85408 (14)0.7141 (5)0.73247 (19)0.0122 (5)
O20.69097 (13)0.2886 (5)0.72425 (19)0.0108 (5)
O30.55917 (15)0.3378 (5)0.6078 (2)0.0136 (5)
O40.56372 (14)0.3299 (5)0.80906 (19)0.0101 (5)
O50.59581 (13)0.0835 (5)0.70865 (19)0.0093 (5)
H50.54570.13130.70460.014*
N10.74531 (16)1.0117 (6)0.4460 (2)0.0100 (6)
H10.71971.07600.38360.012*
N20.63331 (17)0.7267 (6)0.4640 (2)0.0125 (6)
H2A0.60760.79180.40170.015*
H2B0.60940.59980.50140.015*
N30.74822 (16)0.7180 (6)0.5950 (2)0.0079 (5)
H30.72450.58300.62820.010*
C20.7071 (2)0.8186 (7)0.5010 (3)0.0083 (6)
C40.82565 (19)0.8106 (7)0.6444 (3)0.0083 (6)
C50.86285 (18)1.0192 (7)0.5796 (2)0.0074 (6)
C60.8233 (2)1.1151 (7)0.4828 (3)0.0097 (6)
C70.8550 (2)1.3261 (7)0.4091 (3)0.0124 (7)
H7A0.87801.23590.34670.019*
H7B0.89861.43390.45150.019*
H7C0.80931.44730.38070.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0094 (3)0.0184 (3)0.0163 (3)0.00367 (12)0.00175 (16)0.00200 (13)
S10.0049 (4)0.0042 (4)0.0089 (4)0.0008 (3)0.0024 (3)0.0003 (3)
O10.0112 (11)0.0154 (12)0.0097 (11)0.0008 (10)0.0000 (9)0.0036 (10)
O20.0044 (11)0.0123 (11)0.0163 (11)0.0016 (9)0.0038 (8)0.0009 (10)
O30.0133 (12)0.0136 (12)0.0131 (12)0.0018 (9)0.0025 (10)0.0037 (9)
O40.0092 (11)0.0108 (12)0.0114 (11)0.0014 (8)0.0058 (9)0.0042 (8)
O50.0076 (10)0.0041 (11)0.0168 (12)0.0014 (8)0.0042 (8)0.0009 (9)
N10.0080 (13)0.0129 (14)0.0089 (13)0.0007 (11)0.0000 (9)0.0040 (11)
N20.0100 (13)0.0181 (15)0.0088 (13)0.0056 (12)0.0012 (10)0.0044 (12)
N30.0066 (13)0.0088 (13)0.0089 (12)0.0018 (10)0.0032 (10)0.0027 (11)
C20.0092 (15)0.0089 (15)0.0077 (15)0.0009 (12)0.0047 (12)0.0007 (11)
C40.0061 (15)0.0069 (14)0.0124 (15)0.0008 (12)0.0036 (12)0.0028 (12)
C50.0034 (13)0.0091 (15)0.0103 (14)0.0009 (11)0.0029 (10)0.0028 (12)
C60.0068 (15)0.0085 (15)0.0148 (16)0.0007 (11)0.0067 (12)0.0014 (13)
C70.0121 (16)0.0126 (16)0.0134 (16)0.0022 (13)0.0060 (12)0.0019 (13)
Geometric parameters (Å, º) top
Br1—C51.868 (3)N2—H2A0.8800
S1—O31.445 (2)N2—H2B0.8800
S1—O21.461 (2)N3—C21.347 (4)
S1—O41.466 (2)N3—C41.404 (4)
S1—O51.560 (2)N3—H30.8800
O1—C41.210 (4)C4—C51.452 (4)
O5—H50.8400C5—C61.357 (5)
N1—C21.340 (4)C6—C71.487 (5)
N1—C61.387 (4)C7—H7A0.9800
N1—H10.8800C7—H7B0.9800
N2—C21.309 (4)C7—H7C0.9800
O3—S1—O2114.20 (14)N2—C2—N3121.0 (3)
O3—S1—O4112.95 (14)N1—C2—N3117.5 (3)
O2—S1—O4110.26 (14)O1—C4—N3119.3 (3)
O3—S1—O5107.93 (13)O1—C4—C5127.3 (3)
O2—S1—O5103.56 (13)N3—C4—C5113.4 (3)
O4—S1—O5107.25 (13)C6—C5—C4121.5 (3)
S1—O5—H5109.5C6—C5—Br1122.5 (2)
C2—N1—C6123.2 (3)C4—C5—Br1116.0 (2)
C2—N1—H1118.4C5—C6—N1118.8 (3)
C6—N1—H1118.4C5—C6—C7126.5 (3)
C2—N2—H2A120.0N1—C6—C7114.8 (3)
C2—N2—H2B120.0C6—C7—H7A109.5
H2A—N2—H2B120.0C6—C7—H7B109.5
C2—N3—C4125.5 (3)H7A—C7—H7B109.5
C2—N3—H3117.3C6—C7—H7C109.5
C4—N3—H3117.3H7A—C7—H7C109.5
N2—C2—N1121.5 (3)H7B—C7—H7C109.5
C6—N1—C2—N2179.7 (3)O1—C4—C5—Br10.7 (4)
C6—N1—C2—N31.6 (5)N3—C4—C5—Br1179.2 (2)
C4—N3—C2—N2176.9 (3)C4—C5—C6—N10.5 (5)
C4—N3—C2—N14.3 (5)Br1—C5—C6—N1178.5 (2)
C2—N3—C4—O1175.8 (3)C4—C5—C6—C7179.6 (3)
C2—N3—C4—C54.4 (5)Br1—C5—C6—C71.4 (5)
O1—C4—C5—C6178.4 (3)C2—N1—C6—C50.7 (5)
N3—C4—C5—C61.8 (4)C2—N1—C6—C7179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.042.900 (3)165
N2—H2A···O4i0.882.243.002 (4)145
N2—H2A···O5ii0.882.533.160 (3)129
N2—H2B···O30.882.042.915 (4)172
N3—H3···O20.881.962.827 (4)169
O5—H5···O4iii0.841.772.600 (3)170
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds